This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmulasslem.1 | |- ( x = D -> ( ps <-> X = Y ) ) |
|
| xmulasslem.2 | |- ( x = -e D -> ( ps <-> E = F ) ) |
||
| xmulasslem.x | |- ( ph -> X e. RR* ) |
||
| xmulasslem.y | |- ( ph -> Y e. RR* ) |
||
| xmulasslem.d | |- ( ph -> D e. RR* ) |
||
| xmulasslem.ps | |- ( ( ph /\ ( x e. RR* /\ 0 < x ) ) -> ps ) |
||
| xmulasslem.0 | |- ( ph -> ( x = 0 -> ps ) ) |
||
| xmulasslem.e | |- ( ph -> E = -e X ) |
||
| xmulasslem.f | |- ( ph -> F = -e Y ) |
||
| Assertion | xmulasslem | |- ( ph -> X = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmulasslem.1 | |- ( x = D -> ( ps <-> X = Y ) ) |
|
| 2 | xmulasslem.2 | |- ( x = -e D -> ( ps <-> E = F ) ) |
|
| 3 | xmulasslem.x | |- ( ph -> X e. RR* ) |
|
| 4 | xmulasslem.y | |- ( ph -> Y e. RR* ) |
|
| 5 | xmulasslem.d | |- ( ph -> D e. RR* ) |
|
| 6 | xmulasslem.ps | |- ( ( ph /\ ( x e. RR* /\ 0 < x ) ) -> ps ) |
|
| 7 | xmulasslem.0 | |- ( ph -> ( x = 0 -> ps ) ) |
|
| 8 | xmulasslem.e | |- ( ph -> E = -e X ) |
|
| 9 | xmulasslem.f | |- ( ph -> F = -e Y ) |
|
| 10 | 0xr | |- 0 e. RR* |
|
| 11 | xrltso | |- < Or RR* |
|
| 12 | solin | |- ( ( < Or RR* /\ ( D e. RR* /\ 0 e. RR* ) ) -> ( D < 0 \/ D = 0 \/ 0 < D ) ) |
|
| 13 | 11 12 | mpan | |- ( ( D e. RR* /\ 0 e. RR* ) -> ( D < 0 \/ D = 0 \/ 0 < D ) ) |
| 14 | 5 10 13 | sylancl | |- ( ph -> ( D < 0 \/ D = 0 \/ 0 < D ) ) |
| 15 | xlt0neg1 | |- ( D e. RR* -> ( D < 0 <-> 0 < -e D ) ) |
|
| 16 | 5 15 | syl | |- ( ph -> ( D < 0 <-> 0 < -e D ) ) |
| 17 | xnegcl | |- ( D e. RR* -> -e D e. RR* ) |
|
| 18 | 5 17 | syl | |- ( ph -> -e D e. RR* ) |
| 19 | breq2 | |- ( x = -e D -> ( 0 < x <-> 0 < -e D ) ) |
|
| 20 | 19 2 | imbi12d | |- ( x = -e D -> ( ( 0 < x -> ps ) <-> ( 0 < -e D -> E = F ) ) ) |
| 21 | 20 | imbi2d | |- ( x = -e D -> ( ( ph -> ( 0 < x -> ps ) ) <-> ( ph -> ( 0 < -e D -> E = F ) ) ) ) |
| 22 | 6 | exp32 | |- ( ph -> ( x e. RR* -> ( 0 < x -> ps ) ) ) |
| 23 | 22 | com12 | |- ( x e. RR* -> ( ph -> ( 0 < x -> ps ) ) ) |
| 24 | 21 23 | vtoclga | |- ( -e D e. RR* -> ( ph -> ( 0 < -e D -> E = F ) ) ) |
| 25 | 18 24 | mpcom | |- ( ph -> ( 0 < -e D -> E = F ) ) |
| 26 | 16 25 | sylbid | |- ( ph -> ( D < 0 -> E = F ) ) |
| 27 | 8 9 | eqeq12d | |- ( ph -> ( E = F <-> -e X = -e Y ) ) |
| 28 | xneg11 | |- ( ( X e. RR* /\ Y e. RR* ) -> ( -e X = -e Y <-> X = Y ) ) |
|
| 29 | 3 4 28 | syl2anc | |- ( ph -> ( -e X = -e Y <-> X = Y ) ) |
| 30 | 27 29 | bitrd | |- ( ph -> ( E = F <-> X = Y ) ) |
| 31 | 26 30 | sylibd | |- ( ph -> ( D < 0 -> X = Y ) ) |
| 32 | eqeq1 | |- ( x = D -> ( x = 0 <-> D = 0 ) ) |
|
| 33 | 32 1 | imbi12d | |- ( x = D -> ( ( x = 0 -> ps ) <-> ( D = 0 -> X = Y ) ) ) |
| 34 | 33 | imbi2d | |- ( x = D -> ( ( ph -> ( x = 0 -> ps ) ) <-> ( ph -> ( D = 0 -> X = Y ) ) ) ) |
| 35 | 34 7 | vtoclg | |- ( D e. RR* -> ( ph -> ( D = 0 -> X = Y ) ) ) |
| 36 | 5 35 | mpcom | |- ( ph -> ( D = 0 -> X = Y ) ) |
| 37 | breq2 | |- ( x = D -> ( 0 < x <-> 0 < D ) ) |
|
| 38 | 37 1 | imbi12d | |- ( x = D -> ( ( 0 < x -> ps ) <-> ( 0 < D -> X = Y ) ) ) |
| 39 | 38 | imbi2d | |- ( x = D -> ( ( ph -> ( 0 < x -> ps ) ) <-> ( ph -> ( 0 < D -> X = Y ) ) ) ) |
| 40 | 39 23 | vtoclga | |- ( D e. RR* -> ( ph -> ( 0 < D -> X = Y ) ) ) |
| 41 | 5 40 | mpcom | |- ( ph -> ( 0 < D -> X = Y ) ) |
| 42 | 31 36 41 | 3jaod | |- ( ph -> ( ( D < 0 \/ D = 0 \/ 0 < D ) -> X = Y ) ) |
| 43 | 14 42 | mpd | |- ( ph -> X = Y ) |