This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.43 . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.43 | |- ( E. x e. A ( ph \/ ps ) <-> ( E. x e. A ph \/ E. x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 | |- ( E. x e. A ( -. ph -> ps ) <-> ( A. x e. A -. ph -> E. x e. A ps ) ) |
|
| 2 | df-or | |- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
|
| 3 | 2 | rexbii | |- ( E. x e. A ( ph \/ ps ) <-> E. x e. A ( -. ph -> ps ) ) |
| 4 | df-or | |- ( ( E. x e. A ph \/ E. x e. A ps ) <-> ( -. E. x e. A ph -> E. x e. A ps ) ) |
|
| 5 | ralnex | |- ( A. x e. A -. ph <-> -. E. x e. A ph ) |
|
| 6 | 5 | imbi1i | |- ( ( A. x e. A -. ph -> E. x e. A ps ) <-> ( -. E. x e. A ph -> E. x e. A ps ) ) |
| 7 | 4 6 | bitr4i | |- ( ( E. x e. A ph \/ E. x e. A ps ) <-> ( A. x e. A -. ph -> E. x e. A ps ) ) |
| 8 | 1 3 7 | 3bitr4i | |- ( E. x e. A ( ph \/ ps ) <-> ( E. x e. A ph \/ E. x e. A ps ) ) |