This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issod.1 | |- ( ph -> R Po A ) |
|
| issod.2 | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x R y \/ x = y \/ y R x ) ) |
||
| Assertion | issod | |- ( ph -> R Or A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issod.1 | |- ( ph -> R Po A ) |
|
| 2 | issod.2 | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x R y \/ x = y \/ y R x ) ) |
|
| 3 | 2 | ralrimivva | |- ( ph -> A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) |
| 4 | df-so | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
|
| 5 | 1 3 4 | sylanbrc | |- ( ph -> R Or A ) |