This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wemapso2 . (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by AV, 1-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| wemapso2.u | |- U = { x e. ( B ^m A ) | x finSupp Z } |
||
| Assertion | wemapso2lem | |- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> T Or U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 2 | wemapso2.u | |- U = { x e. ( B ^m A ) | x finSupp Z } |
|
| 3 | 2 | ssrab3 | |- U C_ ( B ^m A ) |
| 4 | simpl2 | |- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> R Or A ) |
|
| 5 | simpl3 | |- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> S Or B ) |
|
| 6 | simprll | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. U ) |
|
| 7 | breq1 | |- ( x = a -> ( x finSupp Z <-> a finSupp Z ) ) |
|
| 8 | 7 2 | elrab2 | |- ( a e. U <-> ( a e. ( B ^m A ) /\ a finSupp Z ) ) |
| 9 | 8 | simprbi | |- ( a e. U -> a finSupp Z ) |
| 10 | 6 9 | syl | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a finSupp Z ) |
| 11 | simprlr | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. U ) |
|
| 12 | breq1 | |- ( x = b -> ( x finSupp Z <-> b finSupp Z ) ) |
|
| 13 | 12 2 | elrab2 | |- ( b e. U <-> ( b e. ( B ^m A ) /\ b finSupp Z ) ) |
| 14 | 13 | simprbi | |- ( b e. U -> b finSupp Z ) |
| 15 | 11 14 | syl | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b finSupp Z ) |
| 16 | 10 15 | fsuppunfi | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( a supp Z ) u. ( b supp Z ) ) e. Fin ) |
| 17 | 3 6 | sselid | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) |
| 18 | elmapi | |- ( a e. ( B ^m A ) -> a : A --> B ) |
|
| 19 | 17 18 | syl | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a : A --> B ) |
| 20 | 19 | ffnd | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a Fn A ) |
| 21 | 3 11 | sselid | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) |
| 22 | elmapi | |- ( b e. ( B ^m A ) -> b : A --> B ) |
|
| 23 | 21 22 | syl | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b : A --> B ) |
| 24 | 23 | ffnd | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b Fn A ) |
| 25 | fndmdif | |- ( ( a Fn A /\ b Fn A ) -> dom ( a \ b ) = { c e. A | ( a ` c ) =/= ( b ` c ) } ) |
|
| 26 | 20 24 25 | syl2anc | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) = { c e. A | ( a ` c ) =/= ( b ` c ) } ) |
| 27 | neneor | |- ( ( a ` c ) =/= ( b ` c ) -> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) |
|
| 28 | elun | |- ( c e. ( ( a supp Z ) u. ( b supp Z ) ) <-> ( c e. ( a supp Z ) \/ c e. ( b supp Z ) ) ) |
|
| 29 | simpr | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> c e. A ) |
|
| 30 | 20 | adantr | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> a Fn A ) |
| 31 | elex | |- ( A e. V -> A e. _V ) |
|
| 32 | 31 | 3ad2ant1 | |- ( ( A e. V /\ R Or A /\ S Or B ) -> A e. _V ) |
| 33 | 32 | adantr | |- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> A e. _V ) |
| 34 | 33 | ad2antrr | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> A e. _V ) |
| 35 | simpr | |- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> Z e. W ) |
|
| 36 | 35 | ad2antrr | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> Z e. W ) |
| 37 | elsuppfn | |- ( ( a Fn A /\ A e. _V /\ Z e. W ) -> ( c e. ( a supp Z ) <-> ( c e. A /\ ( a ` c ) =/= Z ) ) ) |
|
| 38 | 30 34 36 37 | syl3anc | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( a supp Z ) <-> ( c e. A /\ ( a ` c ) =/= Z ) ) ) |
| 39 | 29 38 | mpbirand | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( a supp Z ) <-> ( a ` c ) =/= Z ) ) |
| 40 | 24 | adantr | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> b Fn A ) |
| 41 | simpll1 | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> A e. V ) |
|
| 42 | 41 | adantr | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> A e. V ) |
| 43 | elsuppfn | |- ( ( b Fn A /\ A e. V /\ Z e. W ) -> ( c e. ( b supp Z ) <-> ( c e. A /\ ( b ` c ) =/= Z ) ) ) |
|
| 44 | 40 42 36 43 | syl3anc | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( b supp Z ) <-> ( c e. A /\ ( b ` c ) =/= Z ) ) ) |
| 45 | 29 44 | mpbirand | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( b supp Z ) <-> ( b ` c ) =/= Z ) ) |
| 46 | 39 45 | orbi12d | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( c e. ( a supp Z ) \/ c e. ( b supp Z ) ) <-> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) ) |
| 47 | 28 46 | bitrid | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( ( a supp Z ) u. ( b supp Z ) ) <-> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) ) |
| 48 | 27 47 | imbitrrid | |- ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
| 49 | 48 | ralrimiva | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> A. c e. A ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
| 50 | rabss | |- ( { c e. A | ( a ` c ) =/= ( b ` c ) } C_ ( ( a supp Z ) u. ( b supp Z ) ) <-> A. c e. A ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
|
| 51 | 49 50 | sylibr | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> { c e. A | ( a ` c ) =/= ( b ` c ) } C_ ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 52 | 26 51 | eqsstrd | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) C_ ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 53 | 16 52 | ssfid | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) e. Fin ) |
| 54 | suppssdm | |- ( a supp Z ) C_ dom a |
|
| 55 | 54 19 | fssdm | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( a supp Z ) C_ A ) |
| 56 | suppssdm | |- ( b supp Z ) C_ dom b |
|
| 57 | 56 23 | fssdm | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( b supp Z ) C_ A ) |
| 58 | 55 57 | unssd | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( a supp Z ) u. ( b supp Z ) ) C_ A ) |
| 59 | 4 | adantr | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Or A ) |
| 60 | soss | |- ( ( ( a supp Z ) u. ( b supp Z ) ) C_ A -> ( R Or A -> R Or ( ( a supp Z ) u. ( b supp Z ) ) ) ) |
|
| 61 | 58 59 60 | sylc | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Or ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 62 | wofi | |- ( ( R Or ( ( a supp Z ) u. ( b supp Z ) ) /\ ( ( a supp Z ) u. ( b supp Z ) ) e. Fin ) -> R We ( ( a supp Z ) u. ( b supp Z ) ) ) |
|
| 63 | 61 16 62 | syl2anc | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R We ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 64 | wefr | |- ( R We ( ( a supp Z ) u. ( b supp Z ) ) -> R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) |
|
| 65 | 63 64 | syl | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) |
| 66 | simprr | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a =/= b ) |
|
| 67 | fndmdifeq0 | |- ( ( a Fn A /\ b Fn A ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
|
| 68 | 20 24 67 | syl2anc | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
| 69 | 68 | necon3bid | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( dom ( a \ b ) =/= (/) <-> a =/= b ) ) |
| 70 | 66 69 | mpbird | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) =/= (/) ) |
| 71 | fri | |- ( ( ( dom ( a \ b ) e. Fin /\ R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) /\ ( dom ( a \ b ) C_ ( ( a supp Z ) u. ( b supp Z ) ) /\ dom ( a \ b ) =/= (/) ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
|
| 72 | 53 65 52 70 71 | syl22anc | |- ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
| 73 | 1 3 4 5 72 | wemapsolem | |- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> T Or U ) |