This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabss | |- ( { x e. A | ph } C_ B <-> A. x e. A ( ph -> x e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 2 | 1 | sseq1i | |- ( { x e. A | ph } C_ B <-> { x | ( x e. A /\ ph ) } C_ B ) |
| 3 | abss | |- ( { x | ( x e. A /\ ph ) } C_ B <-> A. x ( ( x e. A /\ ph ) -> x e. B ) ) |
|
| 4 | impexp | |- ( ( ( x e. A /\ ph ) -> x e. B ) <-> ( x e. A -> ( ph -> x e. B ) ) ) |
|
| 5 | 4 | albii | |- ( A. x ( ( x e. A /\ ph ) -> x e. B ) <-> A. x ( x e. A -> ( ph -> x e. B ) ) ) |
| 6 | df-ral | |- ( A. x e. A ( ph -> x e. B ) <-> A. x ( x e. A -> ( ph -> x e. B ) ) ) |
|
| 7 | 5 6 | bitr4i | |- ( A. x ( ( x e. A /\ ph ) -> x e. B ) <-> A. x e. A ( ph -> x e. B ) ) |
| 8 | 2 3 7 | 3bitri | |- ( { x e. A | ph } C_ B <-> A. x e. A ( ph -> x e. B ) ) |