This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fndmdifeq0 | |- ( ( F Fn A /\ G Fn A ) -> ( dom ( F \ G ) = (/) <-> F = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmdif | |- ( ( F Fn A /\ G Fn A ) -> dom ( F \ G ) = { x e. A | ( F ` x ) =/= ( G ` x ) } ) |
|
| 2 | 1 | eqeq1d | |- ( ( F Fn A /\ G Fn A ) -> ( dom ( F \ G ) = (/) <-> { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) ) ) |
| 3 | rabeq0 | |- ( { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) <-> A. x e. A -. ( F ` x ) =/= ( G ` x ) ) |
|
| 4 | nne | |- ( -. ( F ` x ) =/= ( G ` x ) <-> ( F ` x ) = ( G ` x ) ) |
|
| 5 | 4 | ralbii | |- ( A. x e. A -. ( F ` x ) =/= ( G ` x ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) |
| 6 | 3 5 | bitri | |- ( { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) <-> A. x e. A ( F ` x ) = ( G ` x ) ) |
| 7 | eqfnfv | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
|
| 8 | 6 7 | bitr4id | |- ( ( F Fn A /\ G Fn A ) -> ( { x e. A | ( F ` x ) =/= ( G ` x ) } = (/) <-> F = G ) ) |
| 9 | 2 8 | bitrd | |- ( ( F Fn A /\ G Fn A ) -> ( dom ( F \ G ) = (/) <-> F = G ) ) |