This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A first set of properties for the sequence I that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wallispilem2.1 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| Assertion | wallispilem2 | |- ( ( I ` 0 ) = _pi /\ ( I ` 1 ) = 2 /\ ( N e. ( ZZ>= ` 2 ) -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem2.1 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| 2 | 0nn0 | |- 0 e. NN0 |
|
| 3 | oveq2 | |- ( n = 0 -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 0 ) ) |
|
| 4 | 3 | adantr | |- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 0 ) ) |
| 5 | ioosscn | |- ( 0 (,) _pi ) C_ CC |
|
| 6 | 5 | sseli | |- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
| 7 | 6 | sincld | |- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
| 8 | 7 | adantl | |- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
| 9 | 8 | exp0d | |- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 0 ) = 1 ) |
| 10 | 4 9 | eqtrd | |- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = 1 ) |
| 11 | 10 | itgeq2dv | |- ( n = 0 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) 1 _d x ) |
| 12 | ioombl | |- ( 0 (,) _pi ) e. dom vol |
|
| 13 | 0re | |- 0 e. RR |
|
| 14 | pire | |- _pi e. RR |
|
| 15 | ioovolcl | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( vol ` ( 0 (,) _pi ) ) e. RR ) |
|
| 16 | 13 14 15 | mp2an | |- ( vol ` ( 0 (,) _pi ) ) e. RR |
| 17 | ax-1cn | |- 1 e. CC |
|
| 18 | itgconst | |- ( ( ( 0 (,) _pi ) e. dom vol /\ ( vol ` ( 0 (,) _pi ) ) e. RR /\ 1 e. CC ) -> S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) ) |
|
| 19 | 12 16 17 18 | mp3an | |- S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) |
| 20 | 16 | recni | |- ( vol ` ( 0 (,) _pi ) ) e. CC |
| 21 | 20 | mullidi | |- ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = ( vol ` ( 0 (,) _pi ) ) |
| 22 | pipos | |- 0 < _pi |
|
| 23 | 13 14 22 | ltleii | |- 0 <_ _pi |
| 24 | volioo | |- ( ( 0 e. RR /\ _pi e. RR /\ 0 <_ _pi ) -> ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) ) |
|
| 25 | 13 14 23 24 | mp3an | |- ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) |
| 26 | 14 | recni | |- _pi e. CC |
| 27 | 26 | subid1i | |- ( _pi - 0 ) = _pi |
| 28 | 25 27 | eqtri | |- ( vol ` ( 0 (,) _pi ) ) = _pi |
| 29 | 21 28 | eqtri | |- ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = _pi |
| 30 | 19 29 | eqtri | |- S. ( 0 (,) _pi ) 1 _d x = _pi |
| 31 | 11 30 | eqtrdi | |- ( n = 0 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = _pi ) |
| 32 | 14 | elexi | |- _pi e. _V |
| 33 | 31 1 32 | fvmpt | |- ( 0 e. NN0 -> ( I ` 0 ) = _pi ) |
| 34 | 2 33 | ax-mp | |- ( I ` 0 ) = _pi |
| 35 | 1nn0 | |- 1 e. NN0 |
|
| 36 | simpl | |- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> n = 1 ) |
|
| 37 | 36 | oveq2d | |- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 1 ) ) |
| 38 | 7 | adantl | |- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
| 39 | 38 | exp1d | |- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 1 ) = ( sin ` x ) ) |
| 40 | 37 39 | eqtrd | |- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( sin ` x ) ) |
| 41 | 40 | itgeq2dv | |- ( n = 1 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) |
| 42 | itgex | |- S. ( 0 (,) _pi ) ( sin ` x ) _d x e. _V |
|
| 43 | 41 1 42 | fvmpt | |- ( 1 e. NN0 -> ( I ` 1 ) = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) |
| 44 | 35 43 | ax-mp | |- ( I ` 1 ) = S. ( 0 (,) _pi ) ( sin ` x ) _d x |
| 45 | itgsin0pi | |- S. ( 0 (,) _pi ) ( sin ` x ) _d x = 2 |
|
| 46 | 44 45 | eqtri | |- ( I ` 1 ) = 2 |
| 47 | id | |- ( N e. ( ZZ>= ` 2 ) -> N e. ( ZZ>= ` 2 ) ) |
|
| 48 | 1 47 | itgsinexp | |- ( N e. ( ZZ>= ` 2 ) -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |
| 49 | 34 46 48 | 3pm3.2i | |- ( ( I ` 0 ) = _pi /\ ( I ` 1 ) = 2 /\ ( N e. ( ZZ>= ` 2 ) -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) ) |