This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a real number lies between -1 and 1. Equation 18 of Gleason p. 311. (Contributed by NM, 16-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinbnd | |- ( A e. RR -> ( -u 1 <_ ( sin ` A ) /\ ( sin ` A ) <_ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recoscl | |- ( A e. RR -> ( cos ` A ) e. RR ) |
|
| 2 | 1 | sqge0d | |- ( A e. RR -> 0 <_ ( ( cos ` A ) ^ 2 ) ) |
| 3 | resincl | |- ( A e. RR -> ( sin ` A ) e. RR ) |
|
| 4 | 3 | resqcld | |- ( A e. RR -> ( ( sin ` A ) ^ 2 ) e. RR ) |
| 5 | 1 | resqcld | |- ( A e. RR -> ( ( cos ` A ) ^ 2 ) e. RR ) |
| 6 | 4 5 | addge01d | |- ( A e. RR -> ( 0 <_ ( ( cos ` A ) ^ 2 ) <-> ( ( sin ` A ) ^ 2 ) <_ ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) ) |
| 7 | 2 6 | mpbid | |- ( A e. RR -> ( ( sin ` A ) ^ 2 ) <_ ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 8 | recn | |- ( A e. RR -> A e. CC ) |
|
| 9 | sincossq | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
|
| 10 | 8 9 | syl | |- ( A e. RR -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 11 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 12 | 10 11 | eqtr4di | |- ( A e. RR -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( 1 ^ 2 ) ) |
| 13 | 7 12 | breqtrd | |- ( A e. RR -> ( ( sin ` A ) ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 14 | 1re | |- 1 e. RR |
|
| 15 | 0le1 | |- 0 <_ 1 |
|
| 16 | lenegsq | |- ( ( ( sin ` A ) e. RR /\ 1 e. RR /\ 0 <_ 1 ) -> ( ( ( sin ` A ) <_ 1 /\ -u ( sin ` A ) <_ 1 ) <-> ( ( sin ` A ) ^ 2 ) <_ ( 1 ^ 2 ) ) ) |
|
| 17 | 14 15 16 | mp3an23 | |- ( ( sin ` A ) e. RR -> ( ( ( sin ` A ) <_ 1 /\ -u ( sin ` A ) <_ 1 ) <-> ( ( sin ` A ) ^ 2 ) <_ ( 1 ^ 2 ) ) ) |
| 18 | lenegcon1 | |- ( ( ( sin ` A ) e. RR /\ 1 e. RR ) -> ( -u ( sin ` A ) <_ 1 <-> -u 1 <_ ( sin ` A ) ) ) |
|
| 19 | 14 18 | mpan2 | |- ( ( sin ` A ) e. RR -> ( -u ( sin ` A ) <_ 1 <-> -u 1 <_ ( sin ` A ) ) ) |
| 20 | 19 | anbi2d | |- ( ( sin ` A ) e. RR -> ( ( ( sin ` A ) <_ 1 /\ -u ( sin ` A ) <_ 1 ) <-> ( ( sin ` A ) <_ 1 /\ -u 1 <_ ( sin ` A ) ) ) ) |
| 21 | 17 20 | bitr3d | |- ( ( sin ` A ) e. RR -> ( ( ( sin ` A ) ^ 2 ) <_ ( 1 ^ 2 ) <-> ( ( sin ` A ) <_ 1 /\ -u 1 <_ ( sin ` A ) ) ) ) |
| 22 | 3 21 | syl | |- ( A e. RR -> ( ( ( sin ` A ) ^ 2 ) <_ ( 1 ^ 2 ) <-> ( ( sin ` A ) <_ 1 /\ -u 1 <_ ( sin ` A ) ) ) ) |
| 23 | 13 22 | mpbid | |- ( A e. RR -> ( ( sin ` A ) <_ 1 /\ -u 1 <_ ( sin ` A ) ) ) |
| 24 | 23 | ancomd | |- ( A e. RR -> ( -u 1 <_ ( sin ` A ) /\ ( sin ` A ) <_ 1 ) ) |