This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sin^n on an open integral is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iblioosinexp | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A (,) B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 2 | 1 | a1i | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A (,) B ) C_ ( A [,] B ) ) |
| 3 | ioombl | |- ( A (,) B ) e. dom vol |
|
| 4 | 3 | a1i | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A (,) B ) e. dom vol ) |
| 5 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 6 | ax-resscn | |- RR C_ CC |
|
| 7 | 5 6 | sstrdi | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ CC ) |
| 8 | 7 | sselda | |- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 9 | 8 | 3adantl3 | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 10 | 9 | sincld | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( sin ` x ) e. CC ) |
| 11 | simpl3 | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
|
| 12 | 10 11 | expcld | |- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 13 | ibliccsinexp | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
|
| 14 | 2 4 12 13 | iblss | |- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A (,) B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |