This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inimasn | |- ( C e. V -> ( ( A i^i B ) " { C } ) = ( ( A " { C } ) i^i ( B " { C } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( ( A " { C } ) i^i ( B " { C } ) ) <-> ( x e. ( A " { C } ) /\ x e. ( B " { C } ) ) ) |
|
| 2 | elin | |- ( <. C , x >. e. ( A i^i B ) <-> ( <. C , x >. e. A /\ <. C , x >. e. B ) ) |
|
| 3 | 2 | a1i | |- ( C e. V -> ( <. C , x >. e. ( A i^i B ) <-> ( <. C , x >. e. A /\ <. C , x >. e. B ) ) ) |
| 4 | elimasng | |- ( ( C e. V /\ x e. _V ) -> ( x e. ( ( A i^i B ) " { C } ) <-> <. C , x >. e. ( A i^i B ) ) ) |
|
| 5 | 4 | elvd | |- ( C e. V -> ( x e. ( ( A i^i B ) " { C } ) <-> <. C , x >. e. ( A i^i B ) ) ) |
| 6 | elimasng | |- ( ( C e. V /\ x e. _V ) -> ( x e. ( A " { C } ) <-> <. C , x >. e. A ) ) |
|
| 7 | 6 | elvd | |- ( C e. V -> ( x e. ( A " { C } ) <-> <. C , x >. e. A ) ) |
| 8 | elimasng | |- ( ( C e. V /\ x e. _V ) -> ( x e. ( B " { C } ) <-> <. C , x >. e. B ) ) |
|
| 9 | 8 | elvd | |- ( C e. V -> ( x e. ( B " { C } ) <-> <. C , x >. e. B ) ) |
| 10 | 7 9 | anbi12d | |- ( C e. V -> ( ( x e. ( A " { C } ) /\ x e. ( B " { C } ) ) <-> ( <. C , x >. e. A /\ <. C , x >. e. B ) ) ) |
| 11 | 3 5 10 | 3bitr4rd | |- ( C e. V -> ( ( x e. ( A " { C } ) /\ x e. ( B " { C } ) ) <-> x e. ( ( A i^i B ) " { C } ) ) ) |
| 12 | 1 11 | bitr2id | |- ( C e. V -> ( x e. ( ( A i^i B ) " { C } ) <-> x e. ( ( A " { C } ) i^i ( B " { C } ) ) ) ) |
| 13 | 12 | eqrdv | |- ( C e. V -> ( ( A i^i B ) " { C } ) = ( ( A " { C } ) i^i ( B " { C } ) ) ) |