This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction. This is to elrab2 what elab2gw is to elab2g . (Contributed by SN, 2-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrab2w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| elrab2w.2 | |- ( y = A -> ( ps <-> ch ) ) |
||
| elrab2w.3 | |- C = { x e. B | ph } |
||
| Assertion | elrab2w | |- ( A e. C <-> ( A e. B /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab2w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | elrab2w.2 | |- ( y = A -> ( ps <-> ch ) ) |
|
| 3 | elrab2w.3 | |- C = { x e. B | ph } |
|
| 4 | elex | |- ( A e. C -> A e. _V ) |
|
| 5 | elex | |- ( A e. B -> A e. _V ) |
|
| 6 | 5 | adantr | |- ( ( A e. B /\ ch ) -> A e. _V ) |
| 7 | eleq1w | |- ( x = y -> ( x e. B <-> y e. B ) ) |
|
| 8 | 7 1 | anbi12d | |- ( x = y -> ( ( x e. B /\ ph ) <-> ( y e. B /\ ps ) ) ) |
| 9 | eleq1 | |- ( y = A -> ( y e. B <-> A e. B ) ) |
|
| 10 | 9 2 | anbi12d | |- ( y = A -> ( ( y e. B /\ ps ) <-> ( A e. B /\ ch ) ) ) |
| 11 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 12 | 3 11 | eqtri | |- C = { x | ( x e. B /\ ph ) } |
| 13 | 8 10 12 | elab2gw | |- ( A e. _V -> ( A e. C <-> ( A e. B /\ ch ) ) ) |
| 14 | 4 6 13 | pm5.21nii | |- ( A e. C <-> ( A e. B /\ ch ) ) |