This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex N and the set of loops at this vertex N . (Contributed by AV, 11-Dec-2020) (Revised by AV, 6-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ushgredgedgloop.e | |- E = ( Edg ` G ) |
|
| ushgredgedgloop.i | |- I = ( iEdg ` G ) |
||
| ushgredgedgloop.a | |- A = { i e. dom I | ( I ` i ) = { N } } |
||
| ushgredgedgloop.b | |- B = { e e. E | e = { N } } |
||
| ushgredgedgloop.f | |- F = ( x e. A |-> ( I ` x ) ) |
||
| Assertion | ushgredgedgloop | |- ( ( G e. USHGraph /\ N e. V ) -> F : A -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushgredgedgloop.e | |- E = ( Edg ` G ) |
|
| 2 | ushgredgedgloop.i | |- I = ( iEdg ` G ) |
|
| 3 | ushgredgedgloop.a | |- A = { i e. dom I | ( I ` i ) = { N } } |
|
| 4 | ushgredgedgloop.b | |- B = { e e. E | e = { N } } |
|
| 5 | ushgredgedgloop.f | |- F = ( x e. A |-> ( I ` x ) ) |
|
| 6 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 7 | 6 2 | ushgrf | |- ( G e. USHGraph -> I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 8 | 7 | adantr | |- ( ( G e. USHGraph /\ N e. V ) -> I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 9 | ssrab2 | |- { i e. dom I | ( I ` i ) = { N } } C_ dom I |
|
| 10 | f1ores | |- ( ( I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) /\ { i e. dom I | ( I ` i ) = { N } } C_ dom I ) -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) : { i e. dom I | ( I ` i ) = { N } } -1-1-onto-> ( I " { i e. dom I | ( I ` i ) = { N } } ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( G e. USHGraph /\ N e. V ) -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) : { i e. dom I | ( I ` i ) = { N } } -1-1-onto-> ( I " { i e. dom I | ( I ` i ) = { N } } ) ) |
| 12 | 3 | a1i | |- ( ( G e. USHGraph /\ N e. V ) -> A = { i e. dom I | ( I ` i ) = { N } } ) |
| 13 | eqidd | |- ( ( ( G e. USHGraph /\ N e. V ) /\ x e. A ) -> ( I ` x ) = ( I ` x ) ) |
|
| 14 | 12 13 | mpteq12dva | |- ( ( G e. USHGraph /\ N e. V ) -> ( x e. A |-> ( I ` x ) ) = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 15 | 5 14 | eqtrid | |- ( ( G e. USHGraph /\ N e. V ) -> F = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 16 | f1f | |- ( I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) -> I : dom I --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
|
| 17 | 7 16 | syl | |- ( G e. USHGraph -> I : dom I --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 18 | 9 | a1i | |- ( G e. USHGraph -> { i e. dom I | ( I ` i ) = { N } } C_ dom I ) |
| 19 | 17 18 | feqresmpt | |- ( G e. USHGraph -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 20 | 19 | adantr | |- ( ( G e. USHGraph /\ N e. V ) -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 21 | 15 20 | eqtr4d | |- ( ( G e. USHGraph /\ N e. V ) -> F = ( I |` { i e. dom I | ( I ` i ) = { N } } ) ) |
| 22 | ushgruhgr | |- ( G e. USHGraph -> G e. UHGraph ) |
|
| 23 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 24 | 23 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 25 | 22 24 | syl | |- ( G e. USHGraph -> Fun ( iEdg ` G ) ) |
| 26 | 2 | funeqi | |- ( Fun I <-> Fun ( iEdg ` G ) ) |
| 27 | 25 26 | sylibr | |- ( G e. USHGraph -> Fun I ) |
| 28 | 27 | adantr | |- ( ( G e. USHGraph /\ N e. V ) -> Fun I ) |
| 29 | dfimafn | |- ( ( Fun I /\ { i e. dom I | ( I ` i ) = { N } } C_ dom I ) -> ( I " { i e. dom I | ( I ` i ) = { N } } ) = { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } ) |
|
| 30 | 28 9 29 | sylancl | |- ( ( G e. USHGraph /\ N e. V ) -> ( I " { i e. dom I | ( I ` i ) = { N } } ) = { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } ) |
| 31 | fveqeq2 | |- ( i = j -> ( ( I ` i ) = { N } <-> ( I ` j ) = { N } ) ) |
|
| 32 | 31 | elrab | |- ( j e. { i e. dom I | ( I ` i ) = { N } } <-> ( j e. dom I /\ ( I ` j ) = { N } ) ) |
| 33 | simpl | |- ( ( j e. dom I /\ ( I ` j ) = { N } ) -> j e. dom I ) |
|
| 34 | fvelrn | |- ( ( Fun I /\ j e. dom I ) -> ( I ` j ) e. ran I ) |
|
| 35 | 2 | eqcomi | |- ( iEdg ` G ) = I |
| 36 | 35 | rneqi | |- ran ( iEdg ` G ) = ran I |
| 37 | 34 36 | eleqtrrdi | |- ( ( Fun I /\ j e. dom I ) -> ( I ` j ) e. ran ( iEdg ` G ) ) |
| 38 | 28 33 37 | syl2an | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) ) -> ( I ` j ) e. ran ( iEdg ` G ) ) |
| 39 | 38 | 3adant3 | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( I ` j ) e. ran ( iEdg ` G ) ) |
| 40 | eleq1 | |- ( f = ( I ` j ) -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) |
|
| 41 | 40 | eqcoms | |- ( ( I ` j ) = f -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) |
| 43 | 39 42 | mpbird | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> f e. ran ( iEdg ` G ) ) |
| 44 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 45 | 44 | a1i | |- ( G e. USHGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 46 | 1 45 | eqtrid | |- ( G e. USHGraph -> E = ran ( iEdg ` G ) ) |
| 47 | 46 | eleq2d | |- ( G e. USHGraph -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) |
| 48 | 47 | adantr | |- ( ( G e. USHGraph /\ N e. V ) -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) |
| 49 | 48 | 3ad2ant1 | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) |
| 50 | 43 49 | mpbird | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> f e. E ) |
| 51 | eqeq1 | |- ( ( I ` j ) = f -> ( ( I ` j ) = { N } <-> f = { N } ) ) |
|
| 52 | 51 | biimpcd | |- ( ( I ` j ) = { N } -> ( ( I ` j ) = f -> f = { N } ) ) |
| 53 | 52 | adantl | |- ( ( j e. dom I /\ ( I ` j ) = { N } ) -> ( ( I ` j ) = f -> f = { N } ) ) |
| 54 | 53 | a1i | |- ( ( G e. USHGraph /\ N e. V ) -> ( ( j e. dom I /\ ( I ` j ) = { N } ) -> ( ( I ` j ) = f -> f = { N } ) ) ) |
| 55 | 54 | 3imp | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> f = { N } ) |
| 56 | 50 55 | jca | |- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( f e. E /\ f = { N } ) ) |
| 57 | 56 | 3exp | |- ( ( G e. USHGraph /\ N e. V ) -> ( ( j e. dom I /\ ( I ` j ) = { N } ) -> ( ( I ` j ) = f -> ( f e. E /\ f = { N } ) ) ) ) |
| 58 | 32 57 | biimtrid | |- ( ( G e. USHGraph /\ N e. V ) -> ( j e. { i e. dom I | ( I ` i ) = { N } } -> ( ( I ` j ) = f -> ( f e. E /\ f = { N } ) ) ) ) |
| 59 | 58 | rexlimdv | |- ( ( G e. USHGraph /\ N e. V ) -> ( E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f -> ( f e. E /\ f = { N } ) ) ) |
| 60 | 25 | funfnd | |- ( G e. USHGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 61 | fvelrnb | |- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( f e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f ) ) |
|
| 62 | 60 61 | syl | |- ( G e. USHGraph -> ( f e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f ) ) |
| 63 | 35 | dmeqi | |- dom ( iEdg ` G ) = dom I |
| 64 | 63 | eleq2i | |- ( j e. dom ( iEdg ` G ) <-> j e. dom I ) |
| 65 | 64 | biimpi | |- ( j e. dom ( iEdg ` G ) -> j e. dom I ) |
| 66 | 65 | adantr | |- ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> j e. dom I ) |
| 67 | 66 | adantl | |- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> j e. dom I ) |
| 68 | 35 | fveq1i | |- ( ( iEdg ` G ) ` j ) = ( I ` j ) |
| 69 | 68 | eqeq2i | |- ( f = ( ( iEdg ` G ) ` j ) <-> f = ( I ` j ) ) |
| 70 | 69 | biimpi | |- ( f = ( ( iEdg ` G ) ` j ) -> f = ( I ` j ) ) |
| 71 | 70 | eqcoms | |- ( ( ( iEdg ` G ) ` j ) = f -> f = ( I ` j ) ) |
| 72 | 71 | eqeq1d | |- ( ( ( iEdg ` G ) ` j ) = f -> ( f = { N } <-> ( I ` j ) = { N } ) ) |
| 73 | 72 | biimpcd | |- ( f = { N } -> ( ( ( iEdg ` G ) ` j ) = f -> ( I ` j ) = { N } ) ) |
| 74 | 73 | adantl | |- ( ( G e. USHGraph /\ f = { N } ) -> ( ( ( iEdg ` G ) ` j ) = f -> ( I ` j ) = { N } ) ) |
| 75 | 74 | adantld | |- ( ( G e. USHGraph /\ f = { N } ) -> ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( I ` j ) = { N } ) ) |
| 76 | 75 | imp | |- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( I ` j ) = { N } ) |
| 77 | 67 76 | jca | |- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( j e. dom I /\ ( I ` j ) = { N } ) ) |
| 78 | 77 32 | sylibr | |- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> j e. { i e. dom I | ( I ` i ) = { N } } ) |
| 79 | 68 | eqeq1i | |- ( ( ( iEdg ` G ) ` j ) = f <-> ( I ` j ) = f ) |
| 80 | 79 | biimpi | |- ( ( ( iEdg ` G ) ` j ) = f -> ( I ` j ) = f ) |
| 81 | 80 | adantl | |- ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( I ` j ) = f ) |
| 82 | 81 | adantl | |- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( I ` j ) = f ) |
| 83 | 78 82 | jca | |- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( j e. { i e. dom I | ( I ` i ) = { N } } /\ ( I ` j ) = f ) ) |
| 84 | 83 | ex | |- ( ( G e. USHGraph /\ f = { N } ) -> ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( j e. { i e. dom I | ( I ` i ) = { N } } /\ ( I ` j ) = f ) ) ) |
| 85 | 84 | reximdv2 | |- ( ( G e. USHGraph /\ f = { N } ) -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 86 | 85 | ex | |- ( G e. USHGraph -> ( f = { N } -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 87 | 86 | com23 | |- ( G e. USHGraph -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> ( f = { N } -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 88 | 62 87 | sylbid | |- ( G e. USHGraph -> ( f e. ran ( iEdg ` G ) -> ( f = { N } -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 89 | 47 88 | sylbid | |- ( G e. USHGraph -> ( f e. E -> ( f = { N } -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 90 | 89 | impd | |- ( G e. USHGraph -> ( ( f e. E /\ f = { N } ) -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 91 | 90 | adantr | |- ( ( G e. USHGraph /\ N e. V ) -> ( ( f e. E /\ f = { N } ) -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 92 | 59 91 | impbid | |- ( ( G e. USHGraph /\ N e. V ) -> ( E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f <-> ( f e. E /\ f = { N } ) ) ) |
| 93 | vex | |- f e. _V |
|
| 94 | eqeq2 | |- ( e = f -> ( ( I ` j ) = e <-> ( I ` j ) = f ) ) |
|
| 95 | 94 | rexbidv | |- ( e = f -> ( E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e <-> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 96 | 93 95 | elab | |- ( f e. { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } <-> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) |
| 97 | eqeq1 | |- ( e = f -> ( e = { N } <-> f = { N } ) ) |
|
| 98 | 97 4 | elrab2 | |- ( f e. B <-> ( f e. E /\ f = { N } ) ) |
| 99 | 92 96 98 | 3bitr4g | |- ( ( G e. USHGraph /\ N e. V ) -> ( f e. { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } <-> f e. B ) ) |
| 100 | 99 | eqrdv | |- ( ( G e. USHGraph /\ N e. V ) -> { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } = B ) |
| 101 | 30 100 | eqtr2d | |- ( ( G e. USHGraph /\ N e. V ) -> B = ( I " { i e. dom I | ( I ` i ) = { N } } ) ) |
| 102 | 21 12 101 | f1oeq123d | |- ( ( G e. USHGraph /\ N e. V ) -> ( F : A -1-1-onto-> B <-> ( I |` { i e. dom I | ( I ` i ) = { N } } ) : { i e. dom I | ( I ` i ) = { N } } -1-1-onto-> ( I " { i e. dom I | ( I ` i ) = { N } } ) ) ) |
| 103 | 11 102 | mpbird | |- ( ( G e. USHGraph /\ N e. V ) -> F : A -1-1-onto-> B ) |