This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfimafn | |- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A ( F ` x ) = y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima2 | |- ( F " A ) = { y | E. x e. A x F y } |
|
| 2 | ssel | |- ( A C_ dom F -> ( x e. A -> x e. dom F ) ) |
|
| 3 | funbrfvb | |- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) = y <-> x F y ) ) |
|
| 4 | 3 | ex | |- ( Fun F -> ( x e. dom F -> ( ( F ` x ) = y <-> x F y ) ) ) |
| 5 | 2 4 | syl9r | |- ( Fun F -> ( A C_ dom F -> ( x e. A -> ( ( F ` x ) = y <-> x F y ) ) ) ) |
| 6 | 5 | imp31 | |- ( ( ( Fun F /\ A C_ dom F ) /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) ) |
| 7 | 6 | rexbidva | |- ( ( Fun F /\ A C_ dom F ) -> ( E. x e. A ( F ` x ) = y <-> E. x e. A x F y ) ) |
| 8 | 7 | abbidv | |- ( ( Fun F /\ A C_ dom F ) -> { y | E. x e. A ( F ` x ) = y } = { y | E. x e. A x F y } ) |
| 9 | 1 8 | eqtr4id | |- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A ( F ` x ) = y } ) |