This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020) (Revised by AV, 9-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ushgruhgr | |- ( G e. USHGraph -> G e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | ushgrf | |- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 4 | f1f | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
|
| 5 | 3 4 | syl | |- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 6 | 1 2 | isuhgr | |- ( G e. USHGraph -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 7 | 5 6 | mpbird | |- ( G e. USHGraph -> G e. UHGraph ) |