This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020) (Proof shortened by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | |- V = ( Vtx ` G ) |
|
| upgrres1.e | |- E = ( Edg ` G ) |
||
| upgrres1.f | |- F = { e e. E | N e/ e } |
||
| upgrres1.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
||
| Assertion | usgrres1 | |- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrres1.e | |- E = ( Edg ` G ) |
|
| 3 | upgrres1.f | |- F = { e e. E | N e/ e } |
|
| 4 | upgrres1.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
|
| 5 | f1oi | |- ( _I |` F ) : F -1-1-onto-> F |
|
| 6 | f1of1 | |- ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F -1-1-> F ) |
|
| 7 | 5 6 | mp1i | |- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : F -1-1-> F ) |
| 8 | eqidd | |- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) = ( _I |` F ) ) |
|
| 9 | dmresi | |- dom ( _I |` F ) = F |
|
| 10 | 9 | a1i | |- ( ( G e. USGraph /\ N e. V ) -> dom ( _I |` F ) = F ) |
| 11 | eqidd | |- ( ( G e. USGraph /\ N e. V ) -> F = F ) |
|
| 12 | 8 10 11 | f1eq123d | |- ( ( G e. USGraph /\ N e. V ) -> ( ( _I |` F ) : dom ( _I |` F ) -1-1-> F <-> ( _I |` F ) : F -1-1-> F ) ) |
| 13 | 7 12 | mpbird | |- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> F ) |
| 14 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 15 | 1 2 3 | umgrres1lem | |- ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 16 | 14 15 | sylan | |- ( ( G e. USGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 17 | f1ssr | |- ( ( ( _I |` F ) : dom ( _I |` F ) -1-1-> F /\ ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
|
| 18 | 13 16 17 | syl2anc | |- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 19 | opex | |- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
|
| 20 | 4 19 | eqeltri | |- S e. _V |
| 21 | 1 2 3 4 | upgrres1lem2 | |- ( Vtx ` S ) = ( V \ { N } ) |
| 22 | 21 | eqcomi | |- ( V \ { N } ) = ( Vtx ` S ) |
| 23 | 1 2 3 4 | upgrres1lem3 | |- ( iEdg ` S ) = ( _I |` F ) |
| 24 | 23 | eqcomi | |- ( _I |` F ) = ( iEdg ` S ) |
| 25 | 22 24 | isusgrs | |- ( S e. _V -> ( S e. USGraph <-> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 26 | 20 25 | mp1i | |- ( ( G e. USGraph /\ N e. V ) -> ( S e. USGraph <-> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 27 | 18 26 | mpbird | |- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |