This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for umgrres1 . (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | |- V = ( Vtx ` G ) |
|
| upgrres1.e | |- E = ( Edg ` G ) |
||
| upgrres1.f | |- F = { e e. E | N e/ e } |
||
| Assertion | umgrres1lem | |- ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrres1.e | |- E = ( Edg ` G ) |
|
| 3 | upgrres1.f | |- F = { e e. E | N e/ e } |
|
| 4 | rnresi | |- ran ( _I |` F ) = F |
|
| 5 | simpr | |- ( ( ( G e. UMGraph /\ N e. V ) /\ e e. E ) -> e e. E ) |
|
| 6 | 5 | adantr | |- ( ( ( ( G e. UMGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. E ) |
| 7 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 8 | 2 | eleq2i | |- ( e e. E <-> e e. ( Edg ` G ) ) |
| 9 | 8 | biimpi | |- ( e e. E -> e e. ( Edg ` G ) ) |
| 10 | edguhgr | |- ( ( G e. UHGraph /\ e e. ( Edg ` G ) ) -> e e. ~P ( Vtx ` G ) ) |
|
| 11 | elpwi | |- ( e e. ~P ( Vtx ` G ) -> e C_ ( Vtx ` G ) ) |
|
| 12 | 11 1 | sseqtrrdi | |- ( e e. ~P ( Vtx ` G ) -> e C_ V ) |
| 13 | 10 12 | syl | |- ( ( G e. UHGraph /\ e e. ( Edg ` G ) ) -> e C_ V ) |
| 14 | 7 9 13 | syl2an | |- ( ( G e. UMGraph /\ e e. E ) -> e C_ V ) |
| 15 | 14 | ad4ant13 | |- ( ( ( ( G e. UMGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e C_ V ) |
| 16 | simpr | |- ( ( ( ( G e. UMGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> N e/ e ) |
|
| 17 | elpwdifsn | |- ( ( e e. E /\ e C_ V /\ N e/ e ) -> e e. ~P ( V \ { N } ) ) |
|
| 18 | 6 15 16 17 | syl3anc | |- ( ( ( ( G e. UMGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. ~P ( V \ { N } ) ) |
| 19 | 18 | ex | |- ( ( ( G e. UMGraph /\ N e. V ) /\ e e. E ) -> ( N e/ e -> e e. ~P ( V \ { N } ) ) ) |
| 20 | 19 | ralrimiva | |- ( ( G e. UMGraph /\ N e. V ) -> A. e e. E ( N e/ e -> e e. ~P ( V \ { N } ) ) ) |
| 21 | rabss | |- ( { e e. E | N e/ e } C_ ~P ( V \ { N } ) <-> A. e e. E ( N e/ e -> e e. ~P ( V \ { N } ) ) ) |
|
| 22 | 20 21 | sylibr | |- ( ( G e. UMGraph /\ N e. V ) -> { e e. E | N e/ e } C_ ~P ( V \ { N } ) ) |
| 23 | 3 22 | eqsstrid | |- ( ( G e. UMGraph /\ N e. V ) -> F C_ ~P ( V \ { N } ) ) |
| 24 | elrabi | |- ( p e. { e e. E | N e/ e } -> p e. E ) |
|
| 25 | 24 2 | eleqtrdi | |- ( p e. { e e. E | N e/ e } -> p e. ( Edg ` G ) ) |
| 26 | edgumgr | |- ( ( G e. UMGraph /\ p e. ( Edg ` G ) ) -> ( p e. ~P ( Vtx ` G ) /\ ( # ` p ) = 2 ) ) |
|
| 27 | 26 | simprd | |- ( ( G e. UMGraph /\ p e. ( Edg ` G ) ) -> ( # ` p ) = 2 ) |
| 28 | 27 | ex | |- ( G e. UMGraph -> ( p e. ( Edg ` G ) -> ( # ` p ) = 2 ) ) |
| 29 | 28 | adantr | |- ( ( G e. UMGraph /\ N e. V ) -> ( p e. ( Edg ` G ) -> ( # ` p ) = 2 ) ) |
| 30 | 25 29 | syl5com | |- ( p e. { e e. E | N e/ e } -> ( ( G e. UMGraph /\ N e. V ) -> ( # ` p ) = 2 ) ) |
| 31 | 30 3 | eleq2s | |- ( p e. F -> ( ( G e. UMGraph /\ N e. V ) -> ( # ` p ) = 2 ) ) |
| 32 | 31 | impcom | |- ( ( ( G e. UMGraph /\ N e. V ) /\ p e. F ) -> ( # ` p ) = 2 ) |
| 33 | 23 32 | ssrabdv | |- ( ( G e. UMGraph /\ N e. V ) -> F C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 34 | 4 33 | eqsstrid | |- ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |