This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgrres1 . (Contributed by AV, 7-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | |- V = ( Vtx ` G ) |
|
| upgrres1.e | |- E = ( Edg ` G ) |
||
| upgrres1.f | |- F = { e e. E | N e/ e } |
||
| upgrres1.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
||
| Assertion | upgrres1lem2 | |- ( Vtx ` S ) = ( V \ { N } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrres1.e | |- E = ( Edg ` G ) |
|
| 3 | upgrres1.f | |- F = { e e. E | N e/ e } |
|
| 4 | upgrres1.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
|
| 5 | 4 | fveq2i | |- ( Vtx ` S ) = ( Vtx ` <. ( V \ { N } ) , ( _I |` F ) >. ) |
| 6 | 1 2 3 | upgrres1lem1 | |- ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V ) |
| 7 | opvtxfv | |- ( ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V ) -> ( Vtx ` <. ( V \ { N } ) , ( _I |` F ) >. ) = ( V \ { N } ) ) |
|
| 8 | 6 7 | ax-mp | |- ( Vtx ` <. ( V \ { N } ) , ( _I |` F ) >. ) = ( V \ { N } ) |
| 9 | 5 8 | eqtri | |- ( Vtx ` S ) = ( V \ { N } ) |