This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020) (Proof shortened by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | ||
| upgrres1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | ||
| Assertion | usgrres1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | |
| 4 | upgrres1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | |
| 5 | f1oi | ⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 | |
| 6 | f1of1 | ⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 –1-1→ 𝐹 ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : 𝐹 –1-1→ 𝐹 ) |
| 8 | eqidd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) = ( I ↾ 𝐹 ) ) | |
| 9 | dmresi | ⊢ dom ( I ↾ 𝐹 ) = 𝐹 | |
| 10 | 9 | a1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → dom ( I ↾ 𝐹 ) = 𝐹 ) |
| 11 | eqidd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = 𝐹 ) | |
| 12 | 8 10 11 | f1eq123d | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ 𝐹 ↔ ( I ↾ 𝐹 ) : 𝐹 –1-1→ 𝐹 ) ) |
| 13 | 7 12 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ 𝐹 ) |
| 14 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 15 | 1 2 3 | umgrres1lem | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 16 | 14 15 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 17 | f1ssr | ⊢ ( ( ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ 𝐹 ∧ ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) | |
| 18 | 13 16 17 | syl2anc | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 19 | opex | ⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ∈ V | |
| 20 | 4 19 | eqeltri | ⊢ 𝑆 ∈ V |
| 21 | 1 2 3 4 | upgrres1lem2 | ⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 22 | 21 | eqcomi | ⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 23 | 1 2 3 4 | upgrres1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
| 24 | 23 | eqcomi | ⊢ ( I ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
| 25 | 22 24 | isusgrs | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ USGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
| 26 | 20 25 | mp1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ USGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
| 27 | 18 26 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |