This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: G is triangle-free. (Contributed by AV, 10-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl2.v | |- V = ( 0 ... 5 ) |
|
| usgrexmpl2.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
||
| usgrexmpl2.g | |- G = <. V , E >. |
||
| Assertion | usgrexmpl2trifr | |- -. E. t t e. ( GrTriangles ` G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | |- V = ( 0 ... 5 ) |
|
| 2 | usgrexmpl2.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
|
| 3 | usgrexmpl2.g | |- G = <. V , E >. |
|
| 4 | 1 2 3 | usgrexmpl2nb0 | |- ( G NeighbVtx 0 ) = { 1 , 3 , 5 } |
| 5 | 4 | eleq2i | |- ( b e. ( G NeighbVtx 0 ) <-> b e. { 1 , 3 , 5 } ) |
| 6 | vex | |- b e. _V |
|
| 7 | 6 | eltp | |- ( b e. { 1 , 3 , 5 } <-> ( b = 1 \/ b = 3 \/ b = 5 ) ) |
| 8 | 5 7 | bitri | |- ( b e. ( G NeighbVtx 0 ) <-> ( b = 1 \/ b = 3 \/ b = 5 ) ) |
| 9 | 4 | eleq2i | |- ( c e. ( G NeighbVtx 0 ) <-> c e. { 1 , 3 , 5 } ) |
| 10 | vex | |- c e. _V |
|
| 11 | 10 | eltp | |- ( c e. { 1 , 3 , 5 } <-> ( c = 1 \/ c = 3 \/ c = 5 ) ) |
| 12 | 9 11 | bitri | |- ( c e. ( G NeighbVtx 0 ) <-> ( c = 1 \/ c = 3 \/ c = 5 ) ) |
| 13 | eqtr3 | |- ( ( b = 1 /\ c = 1 ) -> b = c ) |
|
| 14 | 13 | orcd | |- ( ( b = 1 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 15 | ax-1ne0 | |- 1 =/= 0 |
|
| 16 | neeq1 | |- ( b = 1 -> ( b =/= 0 <-> 1 =/= 0 ) ) |
|
| 17 | 15 16 | mpbiri | |- ( b = 1 -> b =/= 0 ) |
| 18 | 17 | adantr | |- ( ( b = 1 /\ c = 3 ) -> b =/= 0 ) |
| 19 | 18 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. b = 0 ) |
| 20 | 19 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 21 | 3ne0 | |- 3 =/= 0 |
|
| 22 | neeq1 | |- ( c = 3 -> ( c =/= 0 <-> 3 =/= 0 ) ) |
|
| 23 | 21 22 | mpbiri | |- ( c = 3 -> c =/= 0 ) |
| 24 | 23 | adantl | |- ( ( b = 1 /\ c = 3 ) -> c =/= 0 ) |
| 25 | 24 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. c = 0 ) |
| 26 | 25 | olcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 27 | 19 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 28 | 25 | olcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 29 | 27 28 | jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 30 | 2re | |- 2 e. RR |
|
| 31 | 2lt3 | |- 2 < 3 |
|
| 32 | 30 31 | gtneii | |- 3 =/= 2 |
| 33 | neeq1 | |- ( c = 3 -> ( c =/= 2 <-> 3 =/= 2 ) ) |
|
| 34 | 32 33 | mpbiri | |- ( c = 3 -> c =/= 2 ) |
| 35 | 34 | adantl | |- ( ( b = 1 /\ c = 3 ) -> c =/= 2 ) |
| 36 | 35 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. c = 2 ) |
| 37 | 36 | olcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 38 | 1re | |- 1 e. RR |
|
| 39 | 1lt3 | |- 1 < 3 |
|
| 40 | 38 39 | gtneii | |- 3 =/= 1 |
| 41 | neeq1 | |- ( c = 3 -> ( c =/= 1 <-> 3 =/= 1 ) ) |
|
| 42 | 40 41 | mpbiri | |- ( c = 3 -> c =/= 1 ) |
| 43 | 42 | adantl | |- ( ( b = 1 /\ c = 3 ) -> c =/= 1 ) |
| 44 | 43 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. c = 1 ) |
| 45 | 44 | olcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 46 | 37 45 | jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 47 | 1ne2 | |- 1 =/= 2 |
|
| 48 | neeq1 | |- ( b = 1 -> ( b =/= 2 <-> 1 =/= 2 ) ) |
|
| 49 | 47 48 | mpbiri | |- ( b = 1 -> b =/= 2 ) |
| 50 | 49 | adantr | |- ( ( b = 1 /\ c = 3 ) -> b =/= 2 ) |
| 51 | 50 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. b = 2 ) |
| 52 | 51 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 53 | 36 | olcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 54 | 52 53 | jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 55 | 29 46 54 | 3jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 56 | 38 39 | ltneii | |- 1 =/= 3 |
| 57 | neeq1 | |- ( b = 1 -> ( b =/= 3 <-> 1 =/= 3 ) ) |
|
| 58 | 56 57 | mpbiri | |- ( b = 1 -> b =/= 3 ) |
| 59 | 58 | adantr | |- ( ( b = 1 /\ c = 3 ) -> b =/= 3 ) |
| 60 | 59 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. b = 3 ) |
| 61 | 60 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 62 | 1lt4 | |- 1 < 4 |
|
| 63 | 38 62 | ltneii | |- 1 =/= 4 |
| 64 | neeq1 | |- ( b = 1 -> ( b =/= 4 <-> 1 =/= 4 ) ) |
|
| 65 | 63 64 | mpbiri | |- ( b = 1 -> b =/= 4 ) |
| 66 | 65 | adantr | |- ( ( b = 1 /\ c = 3 ) -> b =/= 4 ) |
| 67 | 66 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. b = 4 ) |
| 68 | 67 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 69 | 61 68 | jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 70 | 67 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 71 | 1lt5 | |- 1 < 5 |
|
| 72 | 38 71 | ltneii | |- 1 =/= 5 |
| 73 | neeq1 | |- ( b = 1 -> ( b =/= 5 <-> 1 =/= 5 ) ) |
|
| 74 | 72 73 | mpbiri | |- ( b = 1 -> b =/= 5 ) |
| 75 | 74 | adantr | |- ( ( b = 1 /\ c = 3 ) -> b =/= 5 ) |
| 76 | 75 | neneqd | |- ( ( b = 1 /\ c = 3 ) -> -. b = 5 ) |
| 77 | 76 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 78 | 70 77 | jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 79 | 19 | orcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 80 | 25 | olcd | |- ( ( b = 1 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 81 | 79 80 | jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 82 | 69 78 81 | 3jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 83 | 55 82 | jca | |- ( ( b = 1 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 84 | 20 26 83 | jca31 | |- ( ( b = 1 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 85 | 84 | olcd | |- ( ( b = 1 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 86 | 17 | adantr | |- ( ( b = 1 /\ c = 5 ) -> b =/= 0 ) |
| 87 | 86 | neneqd | |- ( ( b = 1 /\ c = 5 ) -> -. b = 0 ) |
| 88 | 87 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 89 | 58 | adantr | |- ( ( b = 1 /\ c = 5 ) -> b =/= 3 ) |
| 90 | 89 | neneqd | |- ( ( b = 1 /\ c = 5 ) -> -. b = 3 ) |
| 91 | 90 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 92 | 87 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 93 | 0re | |- 0 e. RR |
|
| 94 | 5pos | |- 0 < 5 |
|
| 95 | 93 94 | gtneii | |- 5 =/= 0 |
| 96 | neeq1 | |- ( c = 5 -> ( c =/= 0 <-> 5 =/= 0 ) ) |
|
| 97 | 95 96 | mpbiri | |- ( c = 5 -> c =/= 0 ) |
| 98 | 97 | adantl | |- ( ( b = 1 /\ c = 5 ) -> c =/= 0 ) |
| 99 | 98 | neneqd | |- ( ( b = 1 /\ c = 5 ) -> -. c = 0 ) |
| 100 | 99 | olcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 101 | 92 100 | jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 102 | 2lt5 | |- 2 < 5 |
|
| 103 | 30 102 | gtneii | |- 5 =/= 2 |
| 104 | neeq1 | |- ( c = 5 -> ( c =/= 2 <-> 5 =/= 2 ) ) |
|
| 105 | 103 104 | mpbiri | |- ( c = 5 -> c =/= 2 ) |
| 106 | 105 | adantl | |- ( ( b = 1 /\ c = 5 ) -> c =/= 2 ) |
| 107 | 106 | neneqd | |- ( ( b = 1 /\ c = 5 ) -> -. c = 2 ) |
| 108 | 107 | olcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 109 | 49 | adantr | |- ( ( b = 1 /\ c = 5 ) -> b =/= 2 ) |
| 110 | 109 | neneqd | |- ( ( b = 1 /\ c = 5 ) -> -. b = 2 ) |
| 111 | 110 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 112 | 108 111 | jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 113 | 110 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 114 | 90 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 115 | 113 114 | jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 116 | 101 112 115 | 3jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 117 | 90 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 118 | 65 | adantr | |- ( ( b = 1 /\ c = 5 ) -> b =/= 4 ) |
| 119 | 118 | neneqd | |- ( ( b = 1 /\ c = 5 ) -> -. b = 4 ) |
| 120 | 119 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 121 | 117 120 | jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 122 | 119 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 123 | 74 | adantr | |- ( ( b = 1 /\ c = 5 ) -> b =/= 5 ) |
| 124 | 123 | neneqd | |- ( ( b = 1 /\ c = 5 ) -> -. b = 5 ) |
| 125 | 124 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 126 | 122 125 | jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 127 | 87 | orcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 128 | 99 | olcd | |- ( ( b = 1 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 129 | 127 128 | jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 130 | 121 126 129 | 3jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 131 | 116 130 | jca | |- ( ( b = 1 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 132 | 88 91 131 | jca31 | |- ( ( b = 1 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 133 | 132 | olcd | |- ( ( b = 1 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 134 | 14 85 133 | 3jaodan | |- ( ( b = 1 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 135 | neeq1 | |- ( b = 3 -> ( b =/= 0 <-> 3 =/= 0 ) ) |
|
| 136 | 21 135 | mpbiri | |- ( b = 3 -> b =/= 0 ) |
| 137 | 136 | adantr | |- ( ( b = 3 /\ c = 1 ) -> b =/= 0 ) |
| 138 | 137 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. b = 0 ) |
| 139 | 138 | orcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 140 | neeq1 | |- ( c = 1 -> ( c =/= 0 <-> 1 =/= 0 ) ) |
|
| 141 | 15 140 | mpbiri | |- ( c = 1 -> c =/= 0 ) |
| 142 | 141 | adantl | |- ( ( b = 3 /\ c = 1 ) -> c =/= 0 ) |
| 143 | 142 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. c = 0 ) |
| 144 | 143 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 145 | 138 | orcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 146 | 143 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 147 | 145 146 | jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 148 | 58 | necon2i | |- ( b = 3 -> b =/= 1 ) |
| 149 | 148 | adantr | |- ( ( b = 3 /\ c = 1 ) -> b =/= 1 ) |
| 150 | 149 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. b = 1 ) |
| 151 | 150 | orcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 152 | neeq1 | |- ( b = 3 -> ( b =/= 2 <-> 3 =/= 2 ) ) |
|
| 153 | 32 152 | mpbiri | |- ( b = 3 -> b =/= 2 ) |
| 154 | 153 | adantr | |- ( ( b = 3 /\ c = 1 ) -> b =/= 2 ) |
| 155 | 154 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. b = 2 ) |
| 156 | 155 | orcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 157 | 151 156 | jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 158 | 155 | orcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 159 | neeq1 | |- ( c = 1 -> ( c =/= 2 <-> 1 =/= 2 ) ) |
|
| 160 | 47 159 | mpbiri | |- ( c = 1 -> c =/= 2 ) |
| 161 | 160 | adantl | |- ( ( b = 3 /\ c = 1 ) -> c =/= 2 ) |
| 162 | 161 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. c = 2 ) |
| 163 | 162 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 164 | 158 163 | jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 165 | 147 157 164 | 3jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 166 | neeq1 | |- ( c = 1 -> ( c =/= 4 <-> 1 =/= 4 ) ) |
|
| 167 | 63 166 | mpbiri | |- ( c = 1 -> c =/= 4 ) |
| 168 | 167 | adantl | |- ( ( b = 3 /\ c = 1 ) -> c =/= 4 ) |
| 169 | 168 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. c = 4 ) |
| 170 | 169 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 171 | 42 | necon2i | |- ( c = 1 -> c =/= 3 ) |
| 172 | 171 | adantl | |- ( ( b = 3 /\ c = 1 ) -> c =/= 3 ) |
| 173 | 172 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. c = 3 ) |
| 174 | 173 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 175 | 170 174 | jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 176 | neeq1 | |- ( c = 1 -> ( c =/= 5 <-> 1 =/= 5 ) ) |
|
| 177 | 72 176 | mpbiri | |- ( c = 1 -> c =/= 5 ) |
| 178 | 177 | adantl | |- ( ( b = 3 /\ c = 1 ) -> c =/= 5 ) |
| 179 | 178 | neneqd | |- ( ( b = 3 /\ c = 1 ) -> -. c = 5 ) |
| 180 | 179 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 181 | 169 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 182 | 180 181 | jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 183 | 138 | orcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 184 | 143 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 185 | 183 184 | jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 186 | 175 182 185 | 3jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 187 | 165 186 | jca | |- ( ( b = 3 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 188 | 139 144 187 | jca31 | |- ( ( b = 3 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 189 | 188 | olcd | |- ( ( b = 3 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 190 | eqtr3 | |- ( ( b = 3 /\ c = 3 ) -> b = c ) |
|
| 191 | 190 | orcd | |- ( ( b = 3 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 192 | 136 | adantr | |- ( ( b = 3 /\ c = 5 ) -> b =/= 0 ) |
| 193 | 192 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. b = 0 ) |
| 194 | 193 | orcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 195 | 97 | adantl | |- ( ( b = 3 /\ c = 5 ) -> c =/= 0 ) |
| 196 | 195 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. c = 0 ) |
| 197 | 196 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 198 | 193 | orcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 199 | 196 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 200 | 198 199 | jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 201 | 148 | adantr | |- ( ( b = 3 /\ c = 5 ) -> b =/= 1 ) |
| 202 | 201 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. b = 1 ) |
| 203 | 202 | orcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 204 | 177 | necon2i | |- ( c = 5 -> c =/= 1 ) |
| 205 | 204 | adantl | |- ( ( b = 3 /\ c = 5 ) -> c =/= 1 ) |
| 206 | 205 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. c = 1 ) |
| 207 | 206 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 208 | 203 207 | jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 209 | 153 | adantr | |- ( ( b = 3 /\ c = 5 ) -> b =/= 2 ) |
| 210 | 209 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. b = 2 ) |
| 211 | 210 | orcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 212 | 105 | adantl | |- ( ( b = 3 /\ c = 5 ) -> c =/= 2 ) |
| 213 | 212 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. c = 2 ) |
| 214 | 213 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 215 | 211 214 | jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 216 | 200 208 215 | 3jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 217 | 4re | |- 4 e. RR |
|
| 218 | 4lt5 | |- 4 < 5 |
|
| 219 | 217 218 | gtneii | |- 5 =/= 4 |
| 220 | neeq1 | |- ( c = 5 -> ( c =/= 4 <-> 5 =/= 4 ) ) |
|
| 221 | 219 220 | mpbiri | |- ( c = 5 -> c =/= 4 ) |
| 222 | 221 | adantl | |- ( ( b = 3 /\ c = 5 ) -> c =/= 4 ) |
| 223 | 222 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. c = 4 ) |
| 224 | 223 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 225 | 3re | |- 3 e. RR |
|
| 226 | 3lt4 | |- 3 < 4 |
|
| 227 | 225 226 | ltneii | |- 3 =/= 4 |
| 228 | neeq1 | |- ( b = 3 -> ( b =/= 4 <-> 3 =/= 4 ) ) |
|
| 229 | 227 228 | mpbiri | |- ( b = 3 -> b =/= 4 ) |
| 230 | 229 | adantr | |- ( ( b = 3 /\ c = 5 ) -> b =/= 4 ) |
| 231 | 230 | neneqd | |- ( ( b = 3 /\ c = 5 ) -> -. b = 4 ) |
| 232 | 231 | orcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 233 | 224 232 | jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 234 | 231 | orcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 235 | 223 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 236 | 234 235 | jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 237 | 193 | orcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 238 | 196 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 239 | 237 238 | jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 240 | 233 236 239 | 3jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 241 | 216 240 | jca | |- ( ( b = 3 /\ c = 5 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 242 | 194 197 241 | jca31 | |- ( ( b = 3 /\ c = 5 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 243 | 242 | olcd | |- ( ( b = 3 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 244 | 189 191 243 | 3jaodan | |- ( ( b = 3 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 245 | 171 | adantl | |- ( ( b = 5 /\ c = 1 ) -> c =/= 3 ) |
| 246 | 245 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. c = 3 ) |
| 247 | 246 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 248 | 141 | adantl | |- ( ( b = 5 /\ c = 1 ) -> c =/= 0 ) |
| 249 | 248 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. c = 0 ) |
| 250 | 249 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 251 | neeq1 | |- ( b = 5 -> ( b =/= 0 <-> 5 =/= 0 ) ) |
|
| 252 | 95 251 | mpbiri | |- ( b = 5 -> b =/= 0 ) |
| 253 | 252 | adantr | |- ( ( b = 5 /\ c = 1 ) -> b =/= 0 ) |
| 254 | 253 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. b = 0 ) |
| 255 | 254 | orcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 256 | 249 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 257 | 255 256 | jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 258 | 74 | necon2i | |- ( b = 5 -> b =/= 1 ) |
| 259 | 258 | adantr | |- ( ( b = 5 /\ c = 1 ) -> b =/= 1 ) |
| 260 | 259 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. b = 1 ) |
| 261 | 260 | orcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 262 | neeq1 | |- ( b = 5 -> ( b =/= 2 <-> 5 =/= 2 ) ) |
|
| 263 | 103 262 | mpbiri | |- ( b = 5 -> b =/= 2 ) |
| 264 | 263 | adantr | |- ( ( b = 5 /\ c = 1 ) -> b =/= 2 ) |
| 265 | 264 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. b = 2 ) |
| 266 | 265 | orcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 267 | 261 266 | jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 268 | 246 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 269 | 160 | adantl | |- ( ( b = 5 /\ c = 1 ) -> c =/= 2 ) |
| 270 | 269 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. c = 2 ) |
| 271 | 270 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 272 | 268 271 | jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 273 | 257 267 272 | 3jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 274 | 3lt5 | |- 3 < 5 |
|
| 275 | 225 274 | gtneii | |- 5 =/= 3 |
| 276 | neeq1 | |- ( b = 5 -> ( b =/= 3 <-> 5 =/= 3 ) ) |
|
| 277 | 275 276 | mpbiri | |- ( b = 5 -> b =/= 3 ) |
| 278 | 277 | adantr | |- ( ( b = 5 /\ c = 1 ) -> b =/= 3 ) |
| 279 | 278 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. b = 3 ) |
| 280 | 279 | orcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 281 | 246 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 282 | 280 281 | jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 283 | 177 | adantl | |- ( ( b = 5 /\ c = 1 ) -> c =/= 5 ) |
| 284 | 283 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. c = 5 ) |
| 285 | 284 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 286 | 167 | adantl | |- ( ( b = 5 /\ c = 1 ) -> c =/= 4 ) |
| 287 | 286 | neneqd | |- ( ( b = 5 /\ c = 1 ) -> -. c = 4 ) |
| 288 | 287 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 289 | 285 288 | jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 290 | 254 | orcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 291 | 249 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 292 | 290 291 | jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 293 | 282 289 292 | 3jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 294 | 273 293 | jca | |- ( ( b = 5 /\ c = 1 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 295 | 247 250 294 | jca31 | |- ( ( b = 5 /\ c = 1 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 296 | 295 | olcd | |- ( ( b = 5 /\ c = 1 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 297 | 252 | adantr | |- ( ( b = 5 /\ c = 3 ) -> b =/= 0 ) |
| 298 | 297 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. b = 0 ) |
| 299 | 298 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 300 | 23 | adantl | |- ( ( b = 5 /\ c = 3 ) -> c =/= 0 ) |
| 301 | 300 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. c = 0 ) |
| 302 | 301 | olcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 303 | 298 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 304 | 301 | olcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 305 | 303 304 | jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 306 | 258 | adantr | |- ( ( b = 5 /\ c = 3 ) -> b =/= 1 ) |
| 307 | 306 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. b = 1 ) |
| 308 | 307 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 309 | 42 | adantl | |- ( ( b = 5 /\ c = 3 ) -> c =/= 1 ) |
| 310 | 309 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. c = 1 ) |
| 311 | 310 | olcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 312 | 308 311 | jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 313 | 263 | adantr | |- ( ( b = 5 /\ c = 3 ) -> b =/= 2 ) |
| 314 | 313 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. b = 2 ) |
| 315 | 314 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 316 | 277 | adantr | |- ( ( b = 5 /\ c = 3 ) -> b =/= 3 ) |
| 317 | 316 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. b = 3 ) |
| 318 | 317 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 319 | 315 318 | jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 320 | 305 312 319 | 3jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 321 | 317 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 322 | neeq1 | |- ( b = 5 -> ( b =/= 4 <-> 5 =/= 4 ) ) |
|
| 323 | 219 322 | mpbiri | |- ( b = 5 -> b =/= 4 ) |
| 324 | 323 | adantr | |- ( ( b = 5 /\ c = 3 ) -> b =/= 4 ) |
| 325 | 324 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. b = 4 ) |
| 326 | 325 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 327 | 321 326 | jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 328 | 325 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 329 | neeq1 | |- ( c = 3 -> ( c =/= 4 <-> 3 =/= 4 ) ) |
|
| 330 | 227 329 | mpbiri | |- ( c = 3 -> c =/= 4 ) |
| 331 | 330 | adantl | |- ( ( b = 5 /\ c = 3 ) -> c =/= 4 ) |
| 332 | 331 | neneqd | |- ( ( b = 5 /\ c = 3 ) -> -. c = 4 ) |
| 333 | 332 | olcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 334 | 328 333 | jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 335 | 298 | orcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 336 | 301 | olcd | |- ( ( b = 5 /\ c = 3 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 337 | 335 336 | jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 338 | 327 334 337 | 3jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 339 | 320 338 | jca | |- ( ( b = 5 /\ c = 3 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 340 | 299 302 339 | jca31 | |- ( ( b = 5 /\ c = 3 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 341 | 340 | olcd | |- ( ( b = 5 /\ c = 3 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 342 | eqtr3 | |- ( ( b = 5 /\ c = 5 ) -> b = c ) |
|
| 343 | 342 | orcd | |- ( ( b = 5 /\ c = 5 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 344 | 296 341 343 | 3jaodan | |- ( ( b = 5 /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 345 | 134 244 344 | 3jaoian | |- ( ( ( b = 1 \/ b = 3 \/ b = 5 ) /\ ( c = 1 \/ c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 346 | 8 12 345 | syl2anb | |- ( ( b e. ( G NeighbVtx 0 ) /\ c e. ( G NeighbVtx 0 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 347 | 346 | rgen2 | |- A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 348 | 1 2 3 | usgrexmpl2nb1 | |- ( G NeighbVtx 1 ) = { 0 , 2 } |
| 349 | 348 | eleq2i | |- ( b e. ( G NeighbVtx 1 ) <-> b e. { 0 , 2 } ) |
| 350 | 6 | elpr | |- ( b e. { 0 , 2 } <-> ( b = 0 \/ b = 2 ) ) |
| 351 | 349 350 | bitri | |- ( b e. ( G NeighbVtx 1 ) <-> ( b = 0 \/ b = 2 ) ) |
| 352 | 348 | eleq2i | |- ( c e. ( G NeighbVtx 1 ) <-> c e. { 0 , 2 } ) |
| 353 | 10 | elpr | |- ( c e. { 0 , 2 } <-> ( c = 0 \/ c = 2 ) ) |
| 354 | 352 353 | bitri | |- ( c e. ( G NeighbVtx 1 ) <-> ( c = 0 \/ c = 2 ) ) |
| 355 | eqtr3 | |- ( ( b = 0 /\ c = 0 ) -> b = c ) |
|
| 356 | 355 | orcd | |- ( ( b = 0 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 357 | 2ne0 | |- 2 =/= 0 |
|
| 358 | neeq1 | |- ( b = 2 -> ( b =/= 0 <-> 2 =/= 0 ) ) |
|
| 359 | 357 358 | mpbiri | |- ( b = 2 -> b =/= 0 ) |
| 360 | 359 | adantr | |- ( ( b = 2 /\ c = 0 ) -> b =/= 0 ) |
| 361 | 360 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. b = 0 ) |
| 362 | 361 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 363 | 153 | necon2i | |- ( b = 2 -> b =/= 3 ) |
| 364 | 363 | adantr | |- ( ( b = 2 /\ c = 0 ) -> b =/= 3 ) |
| 365 | 364 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. b = 3 ) |
| 366 | 365 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 367 | 361 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 368 | 49 | necon2i | |- ( b = 2 -> b =/= 1 ) |
| 369 | 368 | adantr | |- ( ( b = 2 /\ c = 0 ) -> b =/= 1 ) |
| 370 | 369 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. b = 1 ) |
| 371 | 370 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 372 | 367 371 | jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 373 | 370 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 374 | 141 | necon2i | |- ( c = 0 -> c =/= 1 ) |
| 375 | 374 | adantl | |- ( ( b = 2 /\ c = 0 ) -> c =/= 1 ) |
| 376 | 375 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. c = 1 ) |
| 377 | 376 | olcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 378 | 373 377 | jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 379 | 23 | necon2i | |- ( c = 0 -> c =/= 3 ) |
| 380 | 379 | adantl | |- ( ( b = 2 /\ c = 0 ) -> c =/= 3 ) |
| 381 | 380 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. c = 3 ) |
| 382 | 381 | olcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 383 | 365 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 384 | 382 383 | jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 385 | 372 378 384 | 3jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 386 | 365 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 387 | 381 | olcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 388 | 386 387 | jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 389 | 97 | necon2i | |- ( c = 0 -> c =/= 5 ) |
| 390 | 389 | adantl | |- ( ( b = 2 /\ c = 0 ) -> c =/= 5 ) |
| 391 | 390 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. c = 5 ) |
| 392 | 391 | olcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 393 | 4pos | |- 0 < 4 |
|
| 394 | 93 393 | ltneii | |- 0 =/= 4 |
| 395 | neeq1 | |- ( c = 0 -> ( c =/= 4 <-> 0 =/= 4 ) ) |
|
| 396 | 394 395 | mpbiri | |- ( c = 0 -> c =/= 4 ) |
| 397 | 396 | adantl | |- ( ( b = 2 /\ c = 0 ) -> c =/= 4 ) |
| 398 | 397 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. c = 4 ) |
| 399 | 398 | olcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 400 | 392 399 | jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 401 | 361 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 402 | 263 | necon2i | |- ( b = 2 -> b =/= 5 ) |
| 403 | 402 | adantr | |- ( ( b = 2 /\ c = 0 ) -> b =/= 5 ) |
| 404 | 403 | neneqd | |- ( ( b = 2 /\ c = 0 ) -> -. b = 5 ) |
| 405 | 404 | orcd | |- ( ( b = 2 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 406 | 401 405 | jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 407 | 388 400 406 | 3jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 408 | 385 407 | jca | |- ( ( b = 2 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 409 | 362 366 408 | jca31 | |- ( ( b = 2 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 410 | 409 | olcd | |- ( ( b = 2 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 411 | 34 | necon2i | |- ( c = 2 -> c =/= 3 ) |
| 412 | 411 | adantl | |- ( ( b = 0 /\ c = 2 ) -> c =/= 3 ) |
| 413 | 412 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. c = 3 ) |
| 414 | 413 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 415 | neeq1 | |- ( c = 2 -> ( c =/= 0 <-> 2 =/= 0 ) ) |
|
| 416 | 357 415 | mpbiri | |- ( c = 2 -> c =/= 0 ) |
| 417 | 416 | adantl | |- ( ( b = 0 /\ c = 2 ) -> c =/= 0 ) |
| 418 | 417 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. c = 0 ) |
| 419 | 418 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 420 | 160 | necon2i | |- ( c = 2 -> c =/= 1 ) |
| 421 | 420 | adantl | |- ( ( b = 0 /\ c = 2 ) -> c =/= 1 ) |
| 422 | 421 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. c = 1 ) |
| 423 | 422 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 424 | 418 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 425 | 423 424 | jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 426 | 17 | necon2i | |- ( b = 0 -> b =/= 1 ) |
| 427 | 426 | adantr | |- ( ( b = 0 /\ c = 2 ) -> b =/= 1 ) |
| 428 | 427 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. b = 1 ) |
| 429 | 428 | orcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 430 | 359 | necon2i | |- ( b = 0 -> b =/= 2 ) |
| 431 | 430 | adantr | |- ( ( b = 0 /\ c = 2 ) -> b =/= 2 ) |
| 432 | 431 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. b = 2 ) |
| 433 | 432 | orcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 434 | 429 433 | jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 435 | 413 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 436 | 136 | necon2i | |- ( b = 0 -> b =/= 3 ) |
| 437 | 436 | adantr | |- ( ( b = 0 /\ c = 2 ) -> b =/= 3 ) |
| 438 | 437 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. b = 3 ) |
| 439 | 438 | orcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 440 | 435 439 | jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 441 | 425 434 440 | 3jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 442 | 438 | orcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 443 | 413 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 444 | 442 443 | jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 445 | neeq1 | |- ( b = 0 -> ( b =/= 4 <-> 0 =/= 4 ) ) |
|
| 446 | 394 445 | mpbiri | |- ( b = 0 -> b =/= 4 ) |
| 447 | 446 | adantr | |- ( ( b = 0 /\ c = 2 ) -> b =/= 4 ) |
| 448 | 447 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. b = 4 ) |
| 449 | 448 | orcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 450 | 252 | necon2i | |- ( b = 0 -> b =/= 5 ) |
| 451 | 450 | adantr | |- ( ( b = 0 /\ c = 2 ) -> b =/= 5 ) |
| 452 | 451 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. b = 5 ) |
| 453 | 452 | orcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 454 | 449 453 | jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 455 | 105 | necon2i | |- ( c = 2 -> c =/= 5 ) |
| 456 | 455 | adantl | |- ( ( b = 0 /\ c = 2 ) -> c =/= 5 ) |
| 457 | 456 | neneqd | |- ( ( b = 0 /\ c = 2 ) -> -. c = 5 ) |
| 458 | 457 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 459 | 418 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 460 | 458 459 | jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 461 | 444 454 460 | 3jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 462 | 441 461 | jca | |- ( ( b = 0 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 463 | 414 419 462 | jca31 | |- ( ( b = 0 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 464 | 463 | olcd | |- ( ( b = 0 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 465 | 359 | adantr | |- ( ( b = 2 /\ c = 2 ) -> b =/= 0 ) |
| 466 | 465 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. b = 0 ) |
| 467 | 466 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 468 | 416 | adantl | |- ( ( b = 2 /\ c = 2 ) -> c =/= 0 ) |
| 469 | 468 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. c = 0 ) |
| 470 | 469 | olcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 471 | 466 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 472 | 469 | olcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 473 | 471 472 | jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 474 | 368 | adantr | |- ( ( b = 2 /\ c = 2 ) -> b =/= 1 ) |
| 475 | 474 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. b = 1 ) |
| 476 | 475 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 477 | 420 | adantl | |- ( ( b = 2 /\ c = 2 ) -> c =/= 1 ) |
| 478 | 477 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. c = 1 ) |
| 479 | 478 | olcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 480 | 476 479 | jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 481 | 411 | adantl | |- ( ( b = 2 /\ c = 2 ) -> c =/= 3 ) |
| 482 | 481 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. c = 3 ) |
| 483 | 482 | olcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 484 | 363 | adantr | |- ( ( b = 2 /\ c = 2 ) -> b =/= 3 ) |
| 485 | 484 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. b = 3 ) |
| 486 | 485 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 487 | 483 486 | jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 488 | 473 480 487 | 3jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 489 | 485 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 490 | 2lt4 | |- 2 < 4 |
|
| 491 | 30 490 | ltneii | |- 2 =/= 4 |
| 492 | neeq1 | |- ( b = 2 -> ( b =/= 4 <-> 2 =/= 4 ) ) |
|
| 493 | 491 492 | mpbiri | |- ( b = 2 -> b =/= 4 ) |
| 494 | 493 | adantr | |- ( ( b = 2 /\ c = 2 ) -> b =/= 4 ) |
| 495 | 494 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. b = 4 ) |
| 496 | 495 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 497 | 489 496 | jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 498 | 495 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 499 | 402 | adantr | |- ( ( b = 2 /\ c = 2 ) -> b =/= 5 ) |
| 500 | 499 | neneqd | |- ( ( b = 2 /\ c = 2 ) -> -. b = 5 ) |
| 501 | 500 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 502 | 498 501 | jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 503 | 466 | orcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 504 | 469 | olcd | |- ( ( b = 2 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 505 | 503 504 | jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 506 | 497 502 505 | 3jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 507 | 488 506 | jca | |- ( ( b = 2 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 508 | 467 470 507 | jca31 | |- ( ( b = 2 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 509 | 508 | olcd | |- ( ( b = 2 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 510 | 356 410 464 509 | ccase | |- ( ( ( b = 0 \/ b = 2 ) /\ ( c = 0 \/ c = 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 511 | 351 354 510 | syl2anb | |- ( ( b e. ( G NeighbVtx 1 ) /\ c e. ( G NeighbVtx 1 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 512 | 511 | rgen2 | |- A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 513 | 1 2 3 | usgrexmpl2nb2 | |- ( G NeighbVtx 2 ) = { 1 , 3 } |
| 514 | 513 | eleq2i | |- ( b e. ( G NeighbVtx 2 ) <-> b e. { 1 , 3 } ) |
| 515 | 6 | elpr | |- ( b e. { 1 , 3 } <-> ( b = 1 \/ b = 3 ) ) |
| 516 | 514 515 | bitri | |- ( b e. ( G NeighbVtx 2 ) <-> ( b = 1 \/ b = 3 ) ) |
| 517 | 513 | eleq2i | |- ( c e. ( G NeighbVtx 2 ) <-> c e. { 1 , 3 } ) |
| 518 | 10 | elpr | |- ( c e. { 1 , 3 } <-> ( c = 1 \/ c = 3 ) ) |
| 519 | 517 518 | bitri | |- ( c e. ( G NeighbVtx 2 ) <-> ( c = 1 \/ c = 3 ) ) |
| 520 | 14 189 85 191 | ccase | |- ( ( ( b = 1 \/ b = 3 ) /\ ( c = 1 \/ c = 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 521 | 516 519 520 | syl2anb | |- ( ( b e. ( G NeighbVtx 2 ) /\ c e. ( G NeighbVtx 2 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 522 | 521 | rgen2 | |- A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 523 | c0ex | |- 0 e. _V |
|
| 524 | 1ex | |- 1 e. _V |
|
| 525 | 2ex | |- 2 e. _V |
|
| 526 | oveq2 | |- ( a = 0 -> ( G NeighbVtx a ) = ( G NeighbVtx 0 ) ) |
|
| 527 | 526 | raleqdv | |- ( a = 0 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 528 | 526 527 | raleqbidv | |- ( a = 0 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 529 | oveq2 | |- ( a = 1 -> ( G NeighbVtx a ) = ( G NeighbVtx 1 ) ) |
|
| 530 | 529 | raleqdv | |- ( a = 1 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 531 | 529 530 | raleqbidv | |- ( a = 1 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 532 | oveq2 | |- ( a = 2 -> ( G NeighbVtx a ) = ( G NeighbVtx 2 ) ) |
|
| 533 | 532 | raleqdv | |- ( a = 2 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 534 | 532 533 | raleqbidv | |- ( a = 2 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 535 | 523 524 525 528 531 534 | raltp | |- ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 0 ) A. c e. ( G NeighbVtx 0 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 1 ) A. c e. ( G NeighbVtx 1 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 2 ) A. c e. ( G NeighbVtx 2 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 536 | 347 512 522 535 | mpbir3an | |- A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 537 | 1 2 3 | usgrexmpl2nb3 | |- ( G NeighbVtx 3 ) = { 0 , 2 , 4 } |
| 538 | 537 | eleq2i | |- ( b e. ( G NeighbVtx 3 ) <-> b e. { 0 , 2 , 4 } ) |
| 539 | 6 | eltp | |- ( b e. { 0 , 2 , 4 } <-> ( b = 0 \/ b = 2 \/ b = 4 ) ) |
| 540 | 538 539 | bitri | |- ( b e. ( G NeighbVtx 3 ) <-> ( b = 0 \/ b = 2 \/ b = 4 ) ) |
| 541 | 537 | eleq2i | |- ( c e. ( G NeighbVtx 3 ) <-> c e. { 0 , 2 , 4 } ) |
| 542 | 10 | eltp | |- ( c e. { 0 , 2 , 4 } <-> ( c = 0 \/ c = 2 \/ c = 4 ) ) |
| 543 | 541 542 | bitri | |- ( c e. ( G NeighbVtx 3 ) <-> ( c = 0 \/ c = 2 \/ c = 4 ) ) |
| 544 | 330 | necon2i | |- ( c = 4 -> c =/= 3 ) |
| 545 | 544 | adantl | |- ( ( b = 0 /\ c = 4 ) -> c =/= 3 ) |
| 546 | 545 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. c = 3 ) |
| 547 | 546 | olcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 548 | 436 | adantr | |- ( ( b = 0 /\ c = 4 ) -> b =/= 3 ) |
| 549 | 548 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. b = 3 ) |
| 550 | 549 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 551 | 167 | necon2i | |- ( c = 4 -> c =/= 1 ) |
| 552 | 551 | adantl | |- ( ( b = 0 /\ c = 4 ) -> c =/= 1 ) |
| 553 | 552 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. c = 1 ) |
| 554 | 553 | olcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 555 | 426 | adantr | |- ( ( b = 0 /\ c = 4 ) -> b =/= 1 ) |
| 556 | 555 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. b = 1 ) |
| 557 | 556 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 558 | 554 557 | jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 559 | 556 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 560 | 430 | adantr | |- ( ( b = 0 /\ c = 4 ) -> b =/= 2 ) |
| 561 | 560 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. b = 2 ) |
| 562 | 561 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 563 | 559 562 | jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 564 | 546 | olcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 565 | 549 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 566 | 564 565 | jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 567 | 558 563 566 | 3jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 568 | 549 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 569 | 546 | olcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 570 | 568 569 | jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 571 | 446 | adantr | |- ( ( b = 0 /\ c = 4 ) -> b =/= 4 ) |
| 572 | 571 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. b = 4 ) |
| 573 | 572 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 574 | 450 | adantr | |- ( ( b = 0 /\ c = 4 ) -> b =/= 5 ) |
| 575 | 574 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. b = 5 ) |
| 576 | 575 | orcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 577 | 573 576 | jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 578 | 221 | necon2i | |- ( c = 4 -> c =/= 5 ) |
| 579 | 578 | adantl | |- ( ( b = 0 /\ c = 4 ) -> c =/= 5 ) |
| 580 | 579 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. c = 5 ) |
| 581 | 580 | olcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 582 | 396 | necon2i | |- ( c = 4 -> c =/= 0 ) |
| 583 | 582 | adantl | |- ( ( b = 0 /\ c = 4 ) -> c =/= 0 ) |
| 584 | 583 | neneqd | |- ( ( b = 0 /\ c = 4 ) -> -. c = 0 ) |
| 585 | 584 | olcd | |- ( ( b = 0 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 586 | 581 585 | jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 587 | 570 577 586 | 3jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 588 | 567 587 | jca | |- ( ( b = 0 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 589 | 547 550 588 | jca31 | |- ( ( b = 0 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 590 | 589 | olcd | |- ( ( b = 0 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 591 | 356 464 590 | 3jaodan | |- ( ( b = 0 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 592 | 359 | adantr | |- ( ( b = 2 /\ c = 4 ) -> b =/= 0 ) |
| 593 | 592 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. b = 0 ) |
| 594 | 593 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 595 | 582 | adantl | |- ( ( b = 2 /\ c = 4 ) -> c =/= 0 ) |
| 596 | 595 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. c = 0 ) |
| 597 | 596 | olcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 598 | 593 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 599 | 596 | olcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 600 | 598 599 | jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 601 | 368 | adantr | |- ( ( b = 2 /\ c = 4 ) -> b =/= 1 ) |
| 602 | 601 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. b = 1 ) |
| 603 | 602 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 604 | 551 | adantl | |- ( ( b = 2 /\ c = 4 ) -> c =/= 1 ) |
| 605 | 604 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. c = 1 ) |
| 606 | 605 | olcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 607 | 603 606 | jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 608 | 544 | adantl | |- ( ( b = 2 /\ c = 4 ) -> c =/= 3 ) |
| 609 | 608 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. c = 3 ) |
| 610 | 609 | olcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 611 | 363 | adantr | |- ( ( b = 2 /\ c = 4 ) -> b =/= 3 ) |
| 612 | 611 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. b = 3 ) |
| 613 | 612 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 614 | 610 613 | jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 615 | 600 607 614 | 3jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 616 | 612 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 617 | 609 | olcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 618 | 616 617 | jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 619 | 493 | adantr | |- ( ( b = 2 /\ c = 4 ) -> b =/= 4 ) |
| 620 | 619 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. b = 4 ) |
| 621 | 620 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 622 | 402 | adantr | |- ( ( b = 2 /\ c = 4 ) -> b =/= 5 ) |
| 623 | 622 | neneqd | |- ( ( b = 2 /\ c = 4 ) -> -. b = 5 ) |
| 624 | 623 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 625 | 621 624 | jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 626 | 593 | orcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 627 | 596 | olcd | |- ( ( b = 2 /\ c = 4 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 628 | 626 627 | jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 629 | 618 625 628 | 3jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 630 | 615 629 | jca | |- ( ( b = 2 /\ c = 4 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 631 | 594 597 630 | jca31 | |- ( ( b = 2 /\ c = 4 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 632 | 631 | olcd | |- ( ( b = 2 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 633 | 410 509 632 | 3jaodan | |- ( ( b = 2 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 634 | 446 | necon2i | |- ( b = 4 -> b =/= 0 ) |
| 635 | 634 | adantr | |- ( ( b = 4 /\ c = 0 ) -> b =/= 0 ) |
| 636 | 635 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. b = 0 ) |
| 637 | 636 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 638 | 229 | necon2i | |- ( b = 4 -> b =/= 3 ) |
| 639 | 638 | adantr | |- ( ( b = 4 /\ c = 0 ) -> b =/= 3 ) |
| 640 | 639 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. b = 3 ) |
| 641 | 640 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 642 | 636 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 643 | 65 | necon2i | |- ( b = 4 -> b =/= 1 ) |
| 644 | 643 | adantr | |- ( ( b = 4 /\ c = 0 ) -> b =/= 1 ) |
| 645 | 644 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. b = 1 ) |
| 646 | 645 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 647 | 642 646 | jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 648 | 416 | necon2i | |- ( c = 0 -> c =/= 2 ) |
| 649 | 648 | adantl | |- ( ( b = 4 /\ c = 0 ) -> c =/= 2 ) |
| 650 | 649 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. c = 2 ) |
| 651 | 650 | olcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 652 | 374 | adantl | |- ( ( b = 4 /\ c = 0 ) -> c =/= 1 ) |
| 653 | 652 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. c = 1 ) |
| 654 | 653 | olcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 655 | 651 654 | jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 656 | 379 | adantl | |- ( ( b = 4 /\ c = 0 ) -> c =/= 3 ) |
| 657 | 656 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. c = 3 ) |
| 658 | 657 | olcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 659 | 640 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 660 | 658 659 | jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 661 | 647 655 660 | 3jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 662 | 640 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 663 | 657 | olcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 664 | 662 663 | jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 665 | 389 | adantl | |- ( ( b = 4 /\ c = 0 ) -> c =/= 5 ) |
| 666 | 665 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. c = 5 ) |
| 667 | 666 | olcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 668 | 396 | adantl | |- ( ( b = 4 /\ c = 0 ) -> c =/= 4 ) |
| 669 | 668 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. c = 4 ) |
| 670 | 669 | olcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 671 | 667 670 | jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 672 | 636 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 673 | 323 | necon2i | |- ( b = 4 -> b =/= 5 ) |
| 674 | 673 | adantr | |- ( ( b = 4 /\ c = 0 ) -> b =/= 5 ) |
| 675 | 674 | neneqd | |- ( ( b = 4 /\ c = 0 ) -> -. b = 5 ) |
| 676 | 675 | orcd | |- ( ( b = 4 /\ c = 0 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 677 | 672 676 | jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 678 | 664 671 677 | 3jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 679 | 661 678 | jca | |- ( ( b = 4 /\ c = 0 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 680 | 637 641 679 | jca31 | |- ( ( b = 4 /\ c = 0 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 681 | 680 | olcd | |- ( ( b = 4 /\ c = 0 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 682 | 634 | adantr | |- ( ( b = 4 /\ c = 2 ) -> b =/= 0 ) |
| 683 | 682 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. b = 0 ) |
| 684 | 683 | orcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 3 ) ) |
| 685 | 416 | adantl | |- ( ( b = 4 /\ c = 2 ) -> c =/= 0 ) |
| 686 | 685 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. c = 0 ) |
| 687 | 686 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 0 ) ) |
| 688 | 683 | orcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 1 ) ) |
| 689 | 686 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 0 ) ) |
| 690 | 688 689 | jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 691 | 643 | adantr | |- ( ( b = 4 /\ c = 2 ) -> b =/= 1 ) |
| 692 | 691 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. b = 1 ) |
| 693 | 692 | orcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 1 \/ -. c = 2 ) ) |
| 694 | 420 | adantl | |- ( ( b = 4 /\ c = 2 ) -> c =/= 1 ) |
| 695 | 694 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. c = 1 ) |
| 696 | 695 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 1 ) ) |
| 697 | 693 696 | jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 698 | 493 | necon2i | |- ( b = 4 -> b =/= 2 ) |
| 699 | 698 | adantr | |- ( ( b = 4 /\ c = 2 ) -> b =/= 2 ) |
| 700 | 699 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. b = 2 ) |
| 701 | 700 | orcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 2 \/ -. c = 3 ) ) |
| 702 | 638 | adantr | |- ( ( b = 4 /\ c = 2 ) -> b =/= 3 ) |
| 703 | 702 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. b = 3 ) |
| 704 | 703 | orcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 2 ) ) |
| 705 | 701 704 | jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 706 | 690 697 705 | 3jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 707 | 703 | orcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 3 \/ -. c = 4 ) ) |
| 708 | 411 | adantl | |- ( ( b = 4 /\ c = 2 ) -> c =/= 3 ) |
| 709 | 708 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. c = 3 ) |
| 710 | 709 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 3 ) ) |
| 711 | 707 710 | jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 712 | 455 | adantl | |- ( ( b = 4 /\ c = 2 ) -> c =/= 5 ) |
| 713 | 712 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. c = 5 ) |
| 714 | 713 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 4 \/ -. c = 5 ) ) |
| 715 | neeq1 | |- ( c = 2 -> ( c =/= 4 <-> 2 =/= 4 ) ) |
|
| 716 | 491 715 | mpbiri | |- ( c = 2 -> c =/= 4 ) |
| 717 | 716 | adantl | |- ( ( b = 4 /\ c = 2 ) -> c =/= 4 ) |
| 718 | 717 | neneqd | |- ( ( b = 4 /\ c = 2 ) -> -. c = 4 ) |
| 719 | 718 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 4 ) ) |
| 720 | 714 719 | jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 721 | 683 | orcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 0 \/ -. c = 5 ) ) |
| 722 | 686 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( -. b = 5 \/ -. c = 0 ) ) |
| 723 | 721 722 | jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 724 | 711 720 723 | 3jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 725 | 706 724 | jca | |- ( ( b = 4 /\ c = 2 ) -> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 726 | 684 687 725 | jca31 | |- ( ( b = 4 /\ c = 2 ) -> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 727 | 726 | olcd | |- ( ( b = 4 /\ c = 2 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 728 | eqtr3 | |- ( ( b = 4 /\ c = 4 ) -> b = c ) |
|
| 729 | 728 | orcd | |- ( ( b = 4 /\ c = 4 ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 730 | 681 727 729 | 3jaodan | |- ( ( b = 4 /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 731 | 591 633 730 | 3jaoian | |- ( ( ( b = 0 \/ b = 2 \/ b = 4 ) /\ ( c = 0 \/ c = 2 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 732 | 540 543 731 | syl2anb | |- ( ( b e. ( G NeighbVtx 3 ) /\ c e. ( G NeighbVtx 3 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 733 | 732 | rgen2 | |- A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 734 | 1 2 3 | usgrexmpl2nb4 | |- ( G NeighbVtx 4 ) = { 3 , 5 } |
| 735 | 734 | eleq2i | |- ( b e. ( G NeighbVtx 4 ) <-> b e. { 3 , 5 } ) |
| 736 | 6 | elpr | |- ( b e. { 3 , 5 } <-> ( b = 3 \/ b = 5 ) ) |
| 737 | 735 736 | bitri | |- ( b e. ( G NeighbVtx 4 ) <-> ( b = 3 \/ b = 5 ) ) |
| 738 | 734 | eleq2i | |- ( c e. ( G NeighbVtx 4 ) <-> c e. { 3 , 5 } ) |
| 739 | 10 | elpr | |- ( c e. { 3 , 5 } <-> ( c = 3 \/ c = 5 ) ) |
| 740 | 738 739 | bitri | |- ( c e. ( G NeighbVtx 4 ) <-> ( c = 3 \/ c = 5 ) ) |
| 741 | 191 341 243 343 | ccase | |- ( ( ( b = 3 \/ b = 5 ) /\ ( c = 3 \/ c = 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 742 | 737 740 741 | syl2anb | |- ( ( b e. ( G NeighbVtx 4 ) /\ c e. ( G NeighbVtx 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 743 | 742 | rgen2 | |- A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 744 | 1 2 3 | usgrexmpl2nb5 | |- ( G NeighbVtx 5 ) = { 0 , 4 } |
| 745 | 744 | eleq2i | |- ( b e. ( G NeighbVtx 5 ) <-> b e. { 0 , 4 } ) |
| 746 | 6 | elpr | |- ( b e. { 0 , 4 } <-> ( b = 0 \/ b = 4 ) ) |
| 747 | 745 746 | bitri | |- ( b e. ( G NeighbVtx 5 ) <-> ( b = 0 \/ b = 4 ) ) |
| 748 | 744 | eleq2i | |- ( c e. ( G NeighbVtx 5 ) <-> c e. { 0 , 4 } ) |
| 749 | 10 | elpr | |- ( c e. { 0 , 4 } <-> ( c = 0 \/ c = 4 ) ) |
| 750 | 748 749 | bitri | |- ( c e. ( G NeighbVtx 5 ) <-> ( c = 0 \/ c = 4 ) ) |
| 751 | 356 681 590 729 | ccase | |- ( ( ( b = 0 \/ b = 4 ) /\ ( c = 0 \/ c = 4 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 752 | 747 750 751 | syl2anb | |- ( ( b e. ( G NeighbVtx 5 ) /\ c e. ( G NeighbVtx 5 ) ) -> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 753 | 752 | rgen2 | |- A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 754 | 3ex | |- 3 e. _V |
|
| 755 | 4nn0 | |- 4 e. NN0 |
|
| 756 | 755 | elexi | |- 4 e. _V |
| 757 | 5nn0 | |- 5 e. NN0 |
|
| 758 | 757 | elexi | |- 5 e. _V |
| 759 | oveq2 | |- ( a = 3 -> ( G NeighbVtx a ) = ( G NeighbVtx 3 ) ) |
|
| 760 | 759 | raleqdv | |- ( a = 3 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 761 | 759 760 | raleqbidv | |- ( a = 3 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 762 | oveq2 | |- ( a = 4 -> ( G NeighbVtx a ) = ( G NeighbVtx 4 ) ) |
|
| 763 | 762 | raleqdv | |- ( a = 4 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 764 | 762 763 | raleqbidv | |- ( a = 4 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 765 | oveq2 | |- ( a = 5 -> ( G NeighbVtx a ) = ( G NeighbVtx 5 ) ) |
|
| 766 | 765 | raleqdv | |- ( a = 5 -> ( A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 767 | 765 766 | raleqbidv | |- ( a = 5 -> ( A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 768 | 754 756 758 761 764 767 | raltp | |- ( A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. b e. ( G NeighbVtx 3 ) A. c e. ( G NeighbVtx 3 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 4 ) A. c e. ( G NeighbVtx 4 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. b e. ( G NeighbVtx 5 ) A. c e. ( G NeighbVtx 5 ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
| 769 | 733 743 753 768 | mpbir3an | |- A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 770 | ralunb | |- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> ( A. a e. { 0 , 1 , 2 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) /\ A. a e. { 3 , 4 , 5 } A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) ) |
|
| 771 | 536 769 770 | mpbir2an | |- A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 772 | ianor | |- ( -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
|
| 773 | nne | |- ( -. b =/= c <-> b = c ) |
|
| 774 | ioran | |- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) ) |
|
| 775 | ioran | |- ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) ) |
|
| 776 | ianor | |- ( -. ( b = 0 /\ c = 3 ) <-> ( -. b = 0 \/ -. c = 3 ) ) |
|
| 777 | ianor | |- ( -. ( b = 3 /\ c = 0 ) <-> ( -. b = 3 \/ -. c = 0 ) ) |
|
| 778 | 776 777 | anbi12i | |- ( ( -. ( b = 0 /\ c = 3 ) /\ -. ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) ) |
| 779 | 775 778 | bitri | |- ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) ) |
| 780 | ioran | |- ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) |
|
| 781 | 3ioran | |- ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) ) |
|
| 782 | ioran | |- ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) ) |
|
| 783 | ianor | |- ( -. ( b = 0 /\ c = 1 ) <-> ( -. b = 0 \/ -. c = 1 ) ) |
|
| 784 | ianor | |- ( -. ( b = 1 /\ c = 0 ) <-> ( -. b = 1 \/ -. c = 0 ) ) |
|
| 785 | 783 784 | anbi12i | |- ( ( -. ( b = 0 /\ c = 1 ) /\ -. ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 786 | 782 785 | bitri | |- ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) ) |
| 787 | ioran | |- ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) ) |
|
| 788 | ianor | |- ( -. ( b = 1 /\ c = 2 ) <-> ( -. b = 1 \/ -. c = 2 ) ) |
|
| 789 | ianor | |- ( -. ( b = 2 /\ c = 1 ) <-> ( -. b = 2 \/ -. c = 1 ) ) |
|
| 790 | 788 789 | anbi12i | |- ( ( -. ( b = 1 /\ c = 2 ) /\ -. ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 791 | 787 790 | bitri | |- ( -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) <-> ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) ) |
| 792 | ioran | |- ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) ) |
|
| 793 | ianor | |- ( -. ( b = 2 /\ c = 3 ) <-> ( -. b = 2 \/ -. c = 3 ) ) |
|
| 794 | ianor | |- ( -. ( b = 3 /\ c = 2 ) <-> ( -. b = 3 \/ -. c = 2 ) ) |
|
| 795 | 793 794 | anbi12i | |- ( ( -. ( b = 2 /\ c = 3 ) /\ -. ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 796 | 792 795 | bitri | |- ( -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) <-> ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) |
| 797 | 786 791 796 | 3anbi123i | |- ( ( -. ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) /\ -. ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) /\ -. ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 798 | 781 797 | bitri | |- ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) ) |
| 799 | 3ioran | |- ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) |
|
| 800 | ioran | |- ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) ) |
|
| 801 | ianor | |- ( -. ( b = 3 /\ c = 4 ) <-> ( -. b = 3 \/ -. c = 4 ) ) |
|
| 802 | ianor | |- ( -. ( b = 4 /\ c = 3 ) <-> ( -. b = 4 \/ -. c = 3 ) ) |
|
| 803 | 801 802 | anbi12i | |- ( ( -. ( b = 3 /\ c = 4 ) /\ -. ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 804 | 800 803 | bitri | |- ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) <-> ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) ) |
| 805 | ioran | |- ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) ) |
|
| 806 | ianor | |- ( -. ( b = 4 /\ c = 5 ) <-> ( -. b = 4 \/ -. c = 5 ) ) |
|
| 807 | ianor | |- ( -. ( b = 5 /\ c = 4 ) <-> ( -. b = 5 \/ -. c = 4 ) ) |
|
| 808 | 806 807 | anbi12i | |- ( ( -. ( b = 4 /\ c = 5 ) /\ -. ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 809 | 805 808 | bitri | |- ( -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) <-> ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) ) |
| 810 | ioran | |- ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) ) |
|
| 811 | ianor | |- ( -. ( b = 0 /\ c = 5 ) <-> ( -. b = 0 \/ -. c = 5 ) ) |
|
| 812 | ianor | |- ( -. ( b = 5 /\ c = 0 ) <-> ( -. b = 5 \/ -. c = 0 ) ) |
|
| 813 | 811 812 | anbi12i | |- ( ( -. ( b = 0 /\ c = 5 ) /\ -. ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 814 | 810 813 | bitri | |- ( -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) <-> ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) |
| 815 | 804 809 814 | 3anbi123i | |- ( ( -. ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) /\ -. ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) /\ -. ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 816 | 799 815 | bitri | |- ( -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) <-> ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) |
| 817 | 798 816 | anbi12i | |- ( ( -. ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) /\ -. ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 818 | 780 817 | bitri | |- ( -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) <-> ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) |
| 819 | 779 818 | anbi12i | |- ( ( -. ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) /\ -. ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 820 | 774 819 | bitri | |- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 821 | 6 10 523 524 | preq12b | |- ( { b , c } = { 0 , 1 } <-> ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) ) |
| 822 | 6 10 524 525 | preq12b | |- ( { b , c } = { 1 , 2 } <-> ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) ) |
| 823 | 6 10 525 754 | preq12b | |- ( { b , c } = { 2 , 3 } <-> ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) |
| 824 | 821 822 823 | 3orbi123i | |- ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) <-> ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) ) |
| 825 | 6 10 754 756 | preq12b | |- ( { b , c } = { 3 , 4 } <-> ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) ) |
| 826 | 6 10 756 758 | preq12b | |- ( { b , c } = { 4 , 5 } <-> ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) ) |
| 827 | 6 10 523 758 | preq12b | |- ( { b , c } = { 0 , 5 } <-> ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) |
| 828 | 825 826 827 | 3orbi123i | |- ( ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) <-> ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) |
| 829 | 824 828 | orbi12i | |- ( ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) <-> ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) |
| 830 | 829 | orbi2i | |- ( ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( ( ( b = 0 /\ c = 1 ) \/ ( b = 1 /\ c = 0 ) ) \/ ( ( b = 1 /\ c = 2 ) \/ ( b = 2 /\ c = 1 ) ) \/ ( ( b = 2 /\ c = 3 ) \/ ( b = 3 /\ c = 2 ) ) ) \/ ( ( ( b = 3 /\ c = 4 ) \/ ( b = 4 /\ c = 3 ) ) \/ ( ( b = 4 /\ c = 5 ) \/ ( b = 5 /\ c = 4 ) ) \/ ( ( b = 0 /\ c = 5 ) \/ ( b = 5 /\ c = 0 ) ) ) ) ) ) |
| 831 | 820 830 | xchnxbir | |- ( -. ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 832 | elun | |- ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) |
|
| 833 | prex | |- { b , c } e. _V |
|
| 834 | 833 | elsn | |- ( { b , c } e. { { 0 , 3 } } <-> { b , c } = { 0 , 3 } ) |
| 835 | 6 10 523 754 | preq12b | |- ( { b , c } = { 0 , 3 } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) ) |
| 836 | 834 835 | bitri | |- ( { b , c } e. { { 0 , 3 } } <-> ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) ) |
| 837 | elun | |- ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) |
|
| 838 | 833 | eltp | |- ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } <-> ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) ) |
| 839 | 833 | eltp | |- ( { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } <-> ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) |
| 840 | 838 839 | orbi12i | |- ( ( { b , c } e. { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } \/ { b , c } e. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) |
| 841 | 837 840 | bitri | |- ( { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) <-> ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) |
| 842 | 836 841 | orbi12i | |- ( ( { b , c } e. { { 0 , 3 } } \/ { b , c } e. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) ) |
| 843 | 832 842 | bitri | |- ( { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( b = 0 /\ c = 3 ) \/ ( b = 3 /\ c = 0 ) ) \/ ( ( { b , c } = { 0 , 1 } \/ { b , c } = { 1 , 2 } \/ { b , c } = { 2 , 3 } ) \/ ( { b , c } = { 3 , 4 } \/ { b , c } = { 4 , 5 } \/ { b , c } = { 0 , 5 } ) ) ) ) |
| 844 | 831 843 | xchnxbir | |- ( -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) <-> ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) |
| 845 | 773 844 | orbi12i | |- ( ( -. b =/= c \/ -. { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) ) |
| 846 | 772 845 | bitr2i | |- ( ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 847 | 846 | 3ralbii | |- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 848 | ralnex3 | |- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) -. ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
|
| 849 | 847 848 | bitri | |- ( A. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) A. b e. ( G NeighbVtx a ) A. c e. ( G NeighbVtx a ) ( b = c \/ ( ( ( -. b = 0 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 0 ) ) /\ ( ( ( ( -. b = 0 \/ -. c = 1 ) /\ ( -. b = 1 \/ -. c = 0 ) ) /\ ( ( -. b = 1 \/ -. c = 2 ) /\ ( -. b = 2 \/ -. c = 1 ) ) /\ ( ( -. b = 2 \/ -. c = 3 ) /\ ( -. b = 3 \/ -. c = 2 ) ) ) /\ ( ( ( -. b = 3 \/ -. c = 4 ) /\ ( -. b = 4 \/ -. c = 3 ) ) /\ ( ( -. b = 4 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 4 ) ) /\ ( ( -. b = 0 \/ -. c = 5 ) /\ ( -. b = 5 \/ -. c = 0 ) ) ) ) ) ) <-> -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 850 | 771 849 | mpbi | |- -. E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) |
| 851 | 1 2 3 | usgrexmpl2 | |- G e. USGraph |
| 852 | 1 2 3 | usgrexmpl2vtx | |- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |
| 853 | 852 | eqcomi | |- ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) = ( Vtx ` G ) |
| 854 | 1 2 3 | usgrexmpl2edg | |- ( Edg ` G ) = ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) |
| 855 | 854 | eqcomi | |- ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) = ( Edg ` G ) |
| 856 | eqid | |- ( G NeighbVtx a ) = ( G NeighbVtx a ) |
|
| 857 | 853 855 856 | usgrgrtrirex | |- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) ) |
| 858 | 851 857 | ax-mp | |- ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 1 , 2 } , { 2 , 3 } } u. { { 3 , 4 } , { 4 , 5 } , { 0 , 5 } } ) ) ) ) |
| 859 | 850 858 | mtbir | |- -. E. t t e. ( GrTriangles ` G ) |