This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqr1.a | |- A e. _V |
|
| preqr1.b | |- B e. _V |
||
| preq12b.c | |- C e. _V |
||
| preq12b.d | |- D e. _V |
||
| Assertion | preq12b | |- ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a | |- A e. _V |
|
| 2 | preqr1.b | |- B e. _V |
|
| 3 | preq12b.c | |- C e. _V |
|
| 4 | preq12b.d | |- D e. _V |
|
| 5 | 1 | prid1 | |- A e. { A , B } |
| 6 | eleq2 | |- ( { A , B } = { C , D } -> ( A e. { A , B } <-> A e. { C , D } ) ) |
|
| 7 | 5 6 | mpbii | |- ( { A , B } = { C , D } -> A e. { C , D } ) |
| 8 | 1 | elpr | |- ( A e. { C , D } <-> ( A = C \/ A = D ) ) |
| 9 | 7 8 | sylib | |- ( { A , B } = { C , D } -> ( A = C \/ A = D ) ) |
| 10 | preq1 | |- ( A = C -> { A , B } = { C , B } ) |
|
| 11 | 10 | eqeq1d | |- ( A = C -> ( { A , B } = { C , D } <-> { C , B } = { C , D } ) ) |
| 12 | 2 4 | preqr2 | |- ( { C , B } = { C , D } -> B = D ) |
| 13 | 11 12 | biimtrdi | |- ( A = C -> ( { A , B } = { C , D } -> B = D ) ) |
| 14 | 13 | com12 | |- ( { A , B } = { C , D } -> ( A = C -> B = D ) ) |
| 15 | 14 | ancld | |- ( { A , B } = { C , D } -> ( A = C -> ( A = C /\ B = D ) ) ) |
| 16 | prcom | |- { C , D } = { D , C } |
|
| 17 | 16 | eqeq2i | |- ( { A , B } = { C , D } <-> { A , B } = { D , C } ) |
| 18 | preq1 | |- ( A = D -> { A , B } = { D , B } ) |
|
| 19 | 18 | eqeq1d | |- ( A = D -> ( { A , B } = { D , C } <-> { D , B } = { D , C } ) ) |
| 20 | 2 3 | preqr2 | |- ( { D , B } = { D , C } -> B = C ) |
| 21 | 19 20 | biimtrdi | |- ( A = D -> ( { A , B } = { D , C } -> B = C ) ) |
| 22 | 21 | com12 | |- ( { A , B } = { D , C } -> ( A = D -> B = C ) ) |
| 23 | 17 22 | sylbi | |- ( { A , B } = { C , D } -> ( A = D -> B = C ) ) |
| 24 | 23 | ancld | |- ( { A , B } = { C , D } -> ( A = D -> ( A = D /\ B = C ) ) ) |
| 25 | 15 24 | orim12d | |- ( { A , B } = { C , D } -> ( ( A = C \/ A = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 26 | 9 25 | mpd | |- ( { A , B } = { C , D } -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
| 27 | preq12 | |- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |
|
| 28 | preq12 | |- ( ( A = D /\ B = C ) -> { A , B } = { D , C } ) |
|
| 29 | prcom | |- { D , C } = { C , D } |
|
| 30 | 28 29 | eqtrdi | |- ( ( A = D /\ B = C ) -> { A , B } = { C , D } ) |
| 31 | 27 30 | jaoi | |- ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> { A , B } = { C , D } ) |
| 32 | 26 31 | impbii | |- ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |