This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The graphs H and G are not isomorphic ( H contains a triangle, see usgrexmpl1tri , whereas G does not, see usgrexmpl2trifr . (Contributed by AV, 10-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl2.v | |- V = ( 0 ... 5 ) |
|
| usgrexmpl2.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
||
| usgrexmpl2.g | |- G = <. V , E >. |
||
| usgrexmpl1.k | |- K = <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> |
||
| usgrexmpl1.h | |- H = <. V , K >. |
||
| Assertion | usgrexmpl12ngric | |- -. G ~=gr H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | |- V = ( 0 ... 5 ) |
|
| 2 | usgrexmpl2.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
|
| 3 | usgrexmpl2.g | |- G = <. V , E >. |
|
| 4 | usgrexmpl1.k | |- K = <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> |
|
| 5 | usgrexmpl1.h | |- H = <. V , K >. |
|
| 6 | 1 2 3 | usgrexmpl2 | |- G e. USGraph |
| 7 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 8 | 6 7 | ax-mp | |- G e. UHGraph |
| 9 | gricsym | |- ( G e. UHGraph -> ( G ~=gr H -> H ~=gr G ) ) |
|
| 10 | 8 9 | ax-mp | |- ( G ~=gr H -> H ~=gr G ) |
| 11 | 1 4 5 | usgrexmpl1tri | |- { 0 , 1 , 2 } e. ( GrTriangles ` H ) |
| 12 | brgric | |- ( H ~=gr G <-> ( H GraphIso G ) =/= (/) ) |
|
| 13 | n0 | |- ( ( H GraphIso G ) =/= (/) <-> E. f f e. ( H GraphIso G ) ) |
|
| 14 | 12 13 | bitri | |- ( H ~=gr G <-> E. f f e. ( H GraphIso G ) ) |
| 15 | 1 2 3 | usgrexmpl2trifr | |- -. E. t t e. ( GrTriangles ` G ) |
| 16 | 1 4 5 | usgrexmpl1 | |- H e. USGraph |
| 17 | usgruhgr | |- ( H e. USGraph -> H e. UHGraph ) |
|
| 18 | 16 17 | ax-mp | |- H e. UHGraph |
| 19 | 18 | a1i | |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. UHGraph ) |
| 20 | 8 | a1i | |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. UHGraph ) |
| 21 | simpl | |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphIso G ) ) |
|
| 22 | simpr | |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) |
|
| 23 | 19 20 21 22 | grimgrtri | |- ( ( f e. ( H GraphIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) |
| 24 | 23 | ex | |- ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 25 | alnex | |- ( A. t -. t e. ( GrTriangles ` G ) <-> -. E. t t e. ( GrTriangles ` G ) ) |
|
| 26 | vex | |- f e. _V |
|
| 27 | 26 | imaex | |- ( f " { 0 , 1 , 2 } ) e. _V |
| 28 | id | |- ( ( f " { 0 , 1 , 2 } ) e. _V -> ( f " { 0 , 1 , 2 } ) e. _V ) |
|
| 29 | eleq1 | |- ( t = ( f " { 0 , 1 , 2 } ) -> ( t e. ( GrTriangles ` G ) <-> ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
|
| 30 | 29 | notbid | |- ( t = ( f " { 0 , 1 , 2 } ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 31 | 30 | adantl | |- ( ( ( f " { 0 , 1 , 2 } ) e. _V /\ t = ( f " { 0 , 1 , 2 } ) ) -> ( -. t e. ( GrTriangles ` G ) <-> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 32 | 28 31 | spcdv | |- ( ( f " { 0 , 1 , 2 } ) e. _V -> ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) ) |
| 33 | 27 32 | ax-mp | |- ( A. t -. t e. ( GrTriangles ` G ) -> -. ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) ) |
| 34 | 33 | pm2.21d | |- ( A. t -. t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) |
| 35 | 25 34 | sylbir | |- ( -. E. t t e. ( GrTriangles ` G ) -> ( ( f " { 0 , 1 , 2 } ) e. ( GrTriangles ` G ) -> -. G ~=gr H ) ) |
| 36 | 15 24 35 | mpsylsyld | |- ( f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) |
| 37 | 36 | exlimiv | |- ( E. f f e. ( H GraphIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) |
| 38 | 14 37 | sylbi | |- ( H ~=gr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=gr H ) ) |
| 39 | 10 11 38 | mpisyl | |- ( G ~=gr H -> -. G ~=gr H ) |
| 40 | 39 | pm2.01i | |- -. G ~=gr H |