This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2trlncl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr | |- ( G e. USGraph -> G e. UPGraph ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 4 | 2 3 | upgrf1istrl | |- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 5 | 1 4 | syl | |- ( G e. USGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 6 | eqidd | |- ( ( # ` F ) = 2 -> F = F ) |
|
| 7 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
|
| 8 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 9 | 7 8 | eqtrdi | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
| 10 | eqidd | |- ( ( # ` F ) = 2 -> dom ( iEdg ` G ) = dom ( iEdg ` G ) ) |
|
| 11 | 6 9 10 | f1eq123d | |- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) <-> F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) ) ) |
| 12 | 9 | raleqdv | |- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 13 | 2wlklem | |- ( A. i e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 14 | 12 13 | bitrdi | |- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
| 15 | 11 14 | anbi12d | |- ( ( # ` F ) = 2 -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
| 16 | 15 | adantl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
| 17 | c0ex | |- 0 e. _V |
|
| 18 | 1ex | |- 1 e. _V |
|
| 19 | 17 18 | pm3.2i | |- ( 0 e. _V /\ 1 e. _V ) |
| 20 | 0ne1 | |- 0 =/= 1 |
|
| 21 | eqid | |- { 0 , 1 } = { 0 , 1 } |
|
| 22 | 21 | f12dfv | |- ( ( ( 0 e. _V /\ 1 e. _V ) /\ 0 =/= 1 ) -> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) <-> ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
| 23 | 19 20 22 | mp2an | |- ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) <-> ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 24 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 25 | 3 24 | usgrf1oedg | |- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 26 | f1of1 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) |
|
| 27 | id | |- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> F : { 0 , 1 } --> dom ( iEdg ` G ) ) |
|
| 28 | 17 | prid1 | |- 0 e. { 0 , 1 } |
| 29 | 28 | a1i | |- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> 0 e. { 0 , 1 } ) |
| 30 | 27 29 | ffvelcdmd | |- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( F ` 0 ) e. dom ( iEdg ` G ) ) |
| 31 | 18 | prid2 | |- 1 e. { 0 , 1 } |
| 32 | 31 | a1i | |- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> 1 e. { 0 , 1 } ) |
| 33 | 27 32 | ffvelcdmd | |- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( F ` 1 ) e. dom ( iEdg ` G ) ) |
| 34 | 30 33 | jca | |- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( ( F ` 0 ) e. dom ( iEdg ` G ) /\ ( F ` 1 ) e. dom ( iEdg ` G ) ) ) |
| 35 | 34 | anim1ci | |- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) /\ ( ( F ` 0 ) e. dom ( iEdg ` G ) /\ ( F ` 1 ) e. dom ( iEdg ` G ) ) ) ) |
| 36 | f1veqaeq | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) /\ ( ( F ` 0 ) e. dom ( iEdg ` G ) /\ ( F ` 1 ) e. dom ( iEdg ` G ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( F ` 0 ) = ( F ` 1 ) ) ) |
|
| 37 | 35 36 | syl | |- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( F ` 0 ) = ( F ` 1 ) ) ) |
| 38 | 37 | necon3d | |- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( F ` 0 ) =/= ( F ` 1 ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) ) ) |
| 39 | simpl | |- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) |
|
| 40 | simpr | |- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) |
|
| 41 | 39 40 | neeq12d | |- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 42 | preq1 | |- ( ( P ` 0 ) = ( P ` 2 ) -> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 2 ) , ( P ` 1 ) } ) |
|
| 43 | prcom | |- { ( P ` 2 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } |
|
| 44 | 42 43 | eqtrdi | |- ( ( P ` 0 ) = ( P ` 2 ) -> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 45 | 44 | necon3i | |- ( { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) =/= ( P ` 2 ) ) |
| 46 | 41 45 | biimtrdi | |- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 47 | 46 | com12 | |- ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 48 | 47 | a1d | |- ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 49 | 38 48 | syl6 | |- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( F ` 0 ) =/= ( F ` 1 ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
| 50 | 49 | expcom | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) -> ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( ( F ` 0 ) =/= ( F ` 1 ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) ) |
| 51 | 50 | impd | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
| 52 | 51 | com23 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) -> ( G e. USGraph -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
| 53 | 26 52 | syl | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( G e. USGraph -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
| 54 | 25 53 | mpcom | |- ( G e. USGraph -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 55 | 23 54 | biimtrid | |- ( G e. USGraph -> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 56 | 55 | impd | |- ( G e. USGraph -> ( ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 57 | 56 | adantr | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 58 | 16 57 | sylbid | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 59 | 58 | com12 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 60 | 59 | 3adant2 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 61 | 60 | expdcom | |- ( G e. USGraph -> ( ( # ` F ) = 2 -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 62 | 61 | com23 | |- ( G e. USGraph -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 63 | 5 62 | sylbid | |- ( G e. USGraph -> ( F ( Trails ` G ) P -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 64 | 63 | com23 | |- ( G e. USGraph -> ( ( # ` F ) = 2 -> ( F ( Trails ` G ) P -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 65 | 64 | imp | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |