This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, any trail of length 2 is a simple path. (Contributed by AV, 5-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2trlspth | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P <-> F ( SPaths ` G ) P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2trlncl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
|
| 2 | 1 | imp | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ F ( Trails ` G ) P ) -> ( P ` 0 ) =/= ( P ` 2 ) ) |
| 3 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 4 | wlkonwlk | |- ( F ( Walks ` G ) P -> F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P ) |
|
| 5 | simpll | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> G e. USGraph ) |
|
| 6 | simplr | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( # ` F ) = 2 ) |
|
| 7 | fveq2 | |- ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = ( P ` 2 ) ) |
|
| 8 | 7 | eqcomd | |- ( ( # ` F ) = 2 -> ( P ` 2 ) = ( P ` ( # ` F ) ) ) |
| 9 | 8 | neeq2d | |- ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` 2 ) <-> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 10 | 9 | biimpd | |- ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 11 | 10 | adantl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 12 | 11 | imp | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
| 13 | usgr2wlkspth | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P <-> F ( ( P ` 0 ) ( SPathsOn ` G ) ( P ` ( # ` F ) ) ) P ) ) |
|
| 14 | 5 6 12 13 | syl3anc | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P <-> F ( ( P ` 0 ) ( SPathsOn ` G ) ( P ` ( # ` F ) ) ) P ) ) |
| 15 | spthonisspth | |- ( F ( ( P ` 0 ) ( SPathsOn ` G ) ( P ` ( # ` F ) ) ) P -> F ( SPaths ` G ) P ) |
|
| 16 | 14 15 | biimtrdi | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P -> F ( SPaths ` G ) P ) ) |
| 17 | 16 | expcom | |- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P -> F ( SPaths ` G ) P ) ) ) |
| 18 | 17 | com13 | |- ( F ( ( P ` 0 ) ( WalksOn ` G ) ( P ` ( # ` F ) ) ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> F ( SPaths ` G ) P ) ) ) |
| 19 | 3 4 18 | 3syl | |- ( F ( Trails ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> F ( SPaths ` G ) P ) ) ) |
| 20 | 19 | impcom | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ F ( Trails ` G ) P ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> F ( SPaths ` G ) P ) ) |
| 21 | 2 20 | mpd | |- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ F ( Trails ` G ) P ) -> F ( SPaths ` G ) P ) |
| 22 | 21 | ex | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P -> F ( SPaths ` G ) P ) ) |
| 23 | spthispth | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
|
| 24 | pthistrl | |- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
|
| 25 | 23 24 | syl | |- ( F ( SPaths ` G ) P -> F ( Trails ` G ) P ) |
| 26 | 22 25 | impbid1 | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P <-> F ( SPaths ` G ) P ) ) |