This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2trlncl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 4 | 2 3 | upgrf1istrl | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 6 | eqidd | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → 𝐹 = 𝐹 ) | |
| 7 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) | |
| 8 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 9 | 7 8 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
| 10 | eqidd | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) ) | |
| 11 | 6 9 10 | f1eq123d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ↔ 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) ) ) |
| 12 | 9 | raleqdv | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 13 | 2wlklem | ⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
| 15 | 11 14 | anbi12d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
| 17 | c0ex | ⊢ 0 ∈ V | |
| 18 | 1ex | ⊢ 1 ∈ V | |
| 19 | 17 18 | pm3.2i | ⊢ ( 0 ∈ V ∧ 1 ∈ V ) |
| 20 | 0ne1 | ⊢ 0 ≠ 1 | |
| 21 | eqid | ⊢ { 0 , 1 } = { 0 , 1 } | |
| 22 | 21 | f12dfv | ⊢ ( ( ( 0 ∈ V ∧ 1 ∈ V ) ∧ 0 ≠ 1 ) → ( 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) ↔ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) |
| 23 | 19 20 22 | mp2an | ⊢ ( 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) ↔ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| 24 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 25 | 3 24 | usgrf1oedg | ⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 26 | f1of1 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ) | |
| 27 | id | ⊢ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) → 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ) | |
| 28 | 17 | prid1 | ⊢ 0 ∈ { 0 , 1 } |
| 29 | 28 | a1i | ⊢ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) → 0 ∈ { 0 , 1 } ) |
| 30 | 27 29 | ffvelcdmd | ⊢ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 ‘ 0 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 31 | 18 | prid2 | ⊢ 1 ∈ { 0 , 1 } |
| 32 | 31 | a1i | ⊢ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) → 1 ∈ { 0 , 1 } ) |
| 33 | 27 32 | ffvelcdmd | ⊢ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 ‘ 1 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 34 | 30 33 | jca | ⊢ ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) → ( ( 𝐹 ‘ 0 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 1 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 35 | 34 | anim1ci | ⊢ ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ 0 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 1 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) |
| 36 | f1veqaeq | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ∧ ( ( 𝐹 ‘ 0 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 1 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) ) |
| 38 | 37 | necon3d | ⊢ ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ≠ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 39 | simpl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) | |
| 40 | simpr | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) | |
| 41 | 39 40 | neeq12d | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ≠ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 42 | preq1 | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) | |
| 43 | prcom | ⊢ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } | |
| 44 | 42 43 | eqtrdi | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 45 | 44 | necon3i | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) |
| 46 | 41 45 | biimtrdi | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ≠ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 47 | 46 | com12 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ≠ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 48 | 47 | a1d | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ≠ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → ( 𝐺 ∈ USGraph → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 49 | 38 48 | syl6 | ⊢ ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) → ( 𝐺 ∈ USGraph → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 50 | 49 | expcom | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) → ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) → ( 𝐺 ∈ USGraph → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) ) |
| 51 | 50 | impd | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) → ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( 𝐺 ∈ USGraph → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 52 | 51 | com23 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) → ( 𝐺 ∈ USGraph → ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 53 | 26 52 | syl | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) → ( 𝐺 ∈ USGraph → ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 54 | 25 53 | mpcom | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : { 0 , 1 } ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 55 | 23 54 | biimtrid | ⊢ ( 𝐺 ∈ USGraph → ( 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 56 | 55 | impd | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( 𝐹 : { 0 , 1 } –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 58 | 16 57 | sylbid | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 59 | 58 | com12 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 60 | 59 | 3adant2 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 61 | 60 | expdcom | ⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 62 | 61 | com23 | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 63 | 5 62 | sylbid | ⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 64 | 63 | com23 | ⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 65 | 64 | imp | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |