This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrtrls.v | |- V = ( Vtx ` G ) |
|
| upgrtrls.i | |- I = ( iEdg ` G ) |
||
| Assertion | upgrf1istrl | |- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrtrls.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrtrls.i | |- I = ( iEdg ` G ) |
|
| 3 | 1 2 | upgristrl | |- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( ( F e. Word dom I /\ Fun `' F ) /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 4 | iswrdb | |- ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 5 | 4 | a1i | |- ( G e. UPGraph -> ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) ) |
| 6 | 5 | anbi1d | |- ( G e. UPGraph -> ( ( F e. Word dom I /\ Fun `' F ) <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom I /\ Fun `' F ) ) ) |
| 7 | df-f1 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom I /\ Fun `' F ) ) |
|
| 8 | 6 7 | bitr4di | |- ( G e. UPGraph -> ( ( F e. Word dom I /\ Fun `' F ) <-> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) ) |
| 9 | 8 | 3anbi1d | |- ( G e. UPGraph -> ( ( ( F e. Word dom I /\ Fun `' F ) /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 10 | 3 9 | bitrd | |- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |