This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1oedg.i | |- I = ( iEdg ` G ) |
|
| usgrf1oedg.e | |- E = ( Edg ` G ) |
||
| Assertion | usgrf1oedg | |- ( G e. USGraph -> I : dom I -1-1-onto-> E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | |- I = ( iEdg ` G ) |
|
| 2 | usgrf1oedg.e | |- E = ( Edg ` G ) |
|
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | 3 1 | usgrf | |- ( G e. USGraph -> I : dom I -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 5 | f1f1orn | |- ( I : dom I -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> I : dom I -1-1-onto-> ran I ) |
|
| 6 | 4 5 | syl | |- ( G e. USGraph -> I : dom I -1-1-onto-> ran I ) |
| 7 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 8 | 7 | a1i | |- ( G e. USGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 9 | 1 | eqcomi | |- ( iEdg ` G ) = I |
| 10 | 9 | rneqi | |- ran ( iEdg ` G ) = ran I |
| 11 | 8 10 | eqtrdi | |- ( G e. USGraph -> ( Edg ` G ) = ran I ) |
| 12 | 2 11 | eqtrid | |- ( G e. USGraph -> E = ran I ) |
| 13 | 12 | f1oeq3d | |- ( G e. USGraph -> ( I : dom I -1-1-onto-> E <-> I : dom I -1-1-onto-> ran I ) ) |
| 14 | 6 13 | mpbird | |- ( G e. USGraph -> I : dom I -1-1-onto-> E ) |