This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptra.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| uptra.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
||
| uptra.g | |- ( ph -> ( K o.func F ) = G ) |
||
| uptra.b | |- B = ( Base ` D ) |
||
| uptra.x | |- ( ph -> X e. B ) |
||
| uptra.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uptrar.m | |- ( ph -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) = M ) |
||
| uptrar.z | |- ( ph -> Z ( G ( C UP E ) Y ) N ) |
||
| Assertion | uptrar | |- ( ph -> Z ( F ( C UP D ) X ) M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptra.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 2 | uptra.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 3 | uptra.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 4 | uptra.b | |- B = ( Base ` D ) |
|
| 5 | uptra.x | |- ( ph -> X e. B ) |
|
| 6 | uptra.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 7 | uptrar.m | |- ( ph -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) = M ) |
|
| 8 | uptrar.z | |- ( ph -> Z ( G ( C UP E ) Y ) N ) |
|
| 9 | 1 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 10 | 2 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 11 | 3 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( K o.func F ) = G ) |
| 12 | 5 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> X e. B ) |
| 13 | 6 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> F e. ( C Func D ) ) |
| 14 | 7 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) = M ) |
| 15 | 14 | fveq2d | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) ) |
| 16 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 17 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 18 | relfull | |- Rel ( D Full E ) |
|
| 19 | relin1 | |- ( Rel ( D Full E ) -> Rel ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 20 | 18 19 | ax-mp | |- Rel ( ( D Full E ) i^i ( D Faith E ) ) |
| 21 | 1st2ndbr | |- ( ( Rel ( ( D Full E ) i^i ( D Faith E ) ) /\ K e. ( ( D Full E ) i^i ( D Faith E ) ) ) -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
|
| 22 | 20 2 21 | sylancr | |- ( ph -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 24 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 25 | 13 | func1st2nd | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 26 | 24 4 25 | funcf1 | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` F ) : ( Base ` C ) --> B ) |
| 27 | simpr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> Z ( G ( C UP E ) Y ) N ) |
|
| 28 | 27 | up1st2nd | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) |
| 29 | 28 24 | uprcl4 | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> Z e. ( Base ` C ) ) |
| 30 | 26 29 | ffvelcdmd | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` F ) ` Z ) e. B ) |
| 31 | 4 16 17 23 12 30 | ffthf1o | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( ( ( 1st ` K ) ` X ) ( Hom ` E ) ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) ) |
| 32 | inss1 | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
|
| 33 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 34 | 32 33 | sstri | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 35 | 34 2 | sselid | |- ( ph -> K e. ( D Func E ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> K e. ( D Func E ) ) |
| 37 | 24 13 36 29 | cofu1 | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` ( K o.func F ) ) ` Z ) = ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) |
| 38 | 11 | fveq2d | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` ( K o.func F ) ) = ( 1st ` G ) ) |
| 39 | 38 | fveq1d | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` ( K o.func F ) ) ` Z ) = ( ( 1st ` G ) ` Z ) ) |
| 40 | 37 39 | eqtr3d | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) = ( ( 1st ` G ) ` Z ) ) |
| 41 | 9 40 | oveq12d | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( ( 1st ` K ) ` X ) ( Hom ` E ) ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) = ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) |
| 42 | 41 | f1oeq3d | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( ( ( 1st ` K ) ` X ) ( Hom ` E ) ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) <-> ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) ) |
| 43 | 31 42 | mpbid | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) |
| 44 | 28 17 | uprcl5 | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> N e. ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) |
| 45 | f1ocnvfv2 | |- ( ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) /\ N e. ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) ) = N ) |
|
| 46 | 43 44 45 | syl2anc | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) ) = N ) |
| 47 | 15 46 | eqtr3d | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
| 48 | f1ocnvdm | |- ( ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) /\ N e. ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) e. ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
|
| 49 | 43 44 48 | syl2anc | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) e. ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 50 | 14 49 | eqeltrrd | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> M e. ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 51 | 9 10 11 4 12 13 47 16 50 | uptra | |- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) |
| 52 | 8 51 | mpdan | |- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) |
| 53 | 8 52 | mpbird | |- ( ph -> Z ( F ( C UP D ) X ) M ) |