This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | up1st2nd.1 | |- ( ph -> X ( F ( D UP E ) W ) M ) |
|
| Assertion | up1st2nd | |- ( ph -> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( D UP E ) W ) M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | up1st2nd.1 | |- ( ph -> X ( F ( D UP E ) W ) M ) |
|
| 2 | relfunc | |- Rel ( D Func E ) |
|
| 3 | df-br | |- ( X ( F ( D UP E ) W ) M <-> <. X , M >. e. ( F ( D UP E ) W ) ) |
|
| 4 | 1 3 | sylib | |- ( ph -> <. X , M >. e. ( F ( D UP E ) W ) ) |
| 5 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 6 | 5 | uprcl | |- ( <. X , M >. e. ( F ( D UP E ) W ) -> ( F e. ( D Func E ) /\ W e. ( Base ` E ) ) ) |
| 7 | 4 6 | syl | |- ( ph -> ( F e. ( D Func E ) /\ W e. ( Base ` E ) ) ) |
| 8 | 7 | simpld | |- ( ph -> F e. ( D Func E ) ) |
| 9 | 1st2nd | |- ( ( Rel ( D Func E ) /\ F e. ( D Func E ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 10 | 2 8 9 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 11 | 10 | oveq1d | |- ( ph -> ( F ( D UP E ) W ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( D UP E ) W ) ) |
| 12 | 11 1 | breqdi | |- ( ph -> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( D UP E ) W ) M ) |