This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptra.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| uptra.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
||
| uptra.g | |- ( ph -> ( K o.func F ) = G ) |
||
| uptra.b | |- B = ( Base ` D ) |
||
| uptra.x | |- ( ph -> X e. B ) |
||
| uptra.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uptra.n | |- ( ph -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
||
| uptra.j | |- J = ( Hom ` D ) |
||
| uptra.m | |- ( ph -> M e. ( X J ( ( 1st ` F ) ` Z ) ) ) |
||
| Assertion | uptra | |- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptra.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 2 | uptra.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 3 | uptra.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 4 | uptra.b | |- B = ( Base ` D ) |
|
| 5 | uptra.x | |- ( ph -> X e. B ) |
|
| 6 | uptra.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 7 | uptra.n | |- ( ph -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
|
| 8 | uptra.j | |- J = ( Hom ` D ) |
|
| 9 | uptra.m | |- ( ph -> M e. ( X J ( ( 1st ` F ) ` Z ) ) ) |
|
| 10 | relfull | |- Rel ( D Full E ) |
|
| 11 | relin1 | |- ( Rel ( D Full E ) -> Rel ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 12 | 10 11 | ax-mp | |- Rel ( ( D Full E ) i^i ( D Faith E ) ) |
| 13 | 1st2ndbr | |- ( ( Rel ( ( D Full E ) i^i ( D Faith E ) ) /\ K e. ( ( D Full E ) i^i ( D Faith E ) ) ) -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
|
| 14 | 12 2 13 | sylancr | |- ( ph -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 15 | inss1 | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
|
| 16 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 17 | 15 16 | sstri | |- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 18 | 17 2 | sselid | |- ( ph -> K e. ( D Func E ) ) |
| 19 | 6 18 | cofu1st2nd | |- ( ph -> ( K o.func F ) = ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 20 | relfunc | |- Rel ( C Func E ) |
|
| 21 | 6 18 | cofucl | |- ( ph -> ( K o.func F ) e. ( C Func E ) ) |
| 22 | 3 21 | eqeltrrd | |- ( ph -> G e. ( C Func E ) ) |
| 23 | 1st2nd | |- ( ( Rel ( C Func E ) /\ G e. ( C Func E ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
|
| 24 | 20 22 23 | sylancr | |- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 25 | 3 19 24 | 3eqtr3d | |- ( ph -> ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 26 | 6 | func1st2nd | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 27 | 1 14 25 4 5 26 7 8 9 | uptr | |- ( ph -> ( Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) |
| 28 | 6 | up1st2ndb | |- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M ) ) |
| 29 | 22 | up1st2ndb | |- ( ph -> ( Z ( G ( C UP E ) Y ) N <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) |
| 30 | 27 28 29 | 3bitr4d | |- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) |