This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uprcl2.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
|
| uprcl4.b | |- B = ( Base ` D ) |
||
| Assertion | uprcl4 | |- ( ph -> X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
|
| 2 | uprcl4.b | |- B = ( Base ` D ) |
|
| 3 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 4 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 5 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 6 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 7 | 1 3 | uprcl3 | |- ( ph -> W e. ( Base ` E ) ) |
| 8 | 1 | uprcl2 | |- ( ph -> F ( D Func E ) G ) |
| 9 | 2 3 4 5 6 7 8 | isuplem | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) |
| 10 | 1 9 | mpbid | |- ( ph -> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) |
| 11 | 10 | simplld | |- ( ph -> X e. B ) |