This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uppropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| uppropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
||
| uppropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| uppropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| uppropd.a | |- ( ph -> A e. V ) |
||
| uppropd.b | |- ( ph -> B e. V ) |
||
| uppropd.c | |- ( ph -> C e. V ) |
||
| uppropd.d | |- ( ph -> D e. V ) |
||
| Assertion | uppropd | |- ( ph -> ( A UP C ) = ( B UP D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uppropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| 2 | uppropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
|
| 3 | uppropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 4 | uppropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 5 | uppropd.a | |- ( ph -> A e. V ) |
|
| 6 | uppropd.b | |- ( ph -> B e. V ) |
|
| 7 | uppropd.c | |- ( ph -> C e. V ) |
|
| 8 | uppropd.d | |- ( ph -> D e. V ) |
|
| 9 | 1 2 3 4 5 6 7 8 | funcpropd | |- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 10 | 3 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 11 | 10 | adantr | |- ( ( ph /\ f e. ( A Func C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 12 | 1 | homfeqbas | |- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 14 | 13 | adantr | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 15 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 16 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 17 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 18 | 3 | ad3antrrr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 19 | simprr | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> w e. ( Base ` C ) ) |
|
| 20 | 19 | ad2antrr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> w e. ( Base ` C ) ) |
| 21 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 22 | simprl | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> f e. ( A Func C ) ) |
|
| 23 | 22 | func1st2nd | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
| 24 | 21 15 23 | funcf1 | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` A ) --> ( Base ` C ) ) |
| 25 | 24 | adantr | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( 1st ` f ) : ( Base ` A ) --> ( Base ` C ) ) |
| 26 | 25 | ffvelcdmda | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( ( 1st ` f ) ` y ) e. ( Base ` C ) ) |
| 27 | 15 16 17 18 20 26 | homfeqval | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) = ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) ) |
| 28 | eqid | |- ( Hom ` A ) = ( Hom ` A ) |
|
| 29 | eqid | |- ( Hom ` B ) = ( Hom ` B ) |
|
| 30 | 1 | ad4antr | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 31 | simprl | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> x e. ( Base ` A ) ) |
|
| 32 | 31 | ad2antrr | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> x e. ( Base ` A ) ) |
| 33 | simplr | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> y e. ( Base ` A ) ) |
|
| 34 | 21 28 29 30 32 33 | homfeqval | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 35 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 36 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 37 | 18 | ad2antrr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 38 | 4 | ad5antr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 39 | 20 | ad2antrr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> w e. ( Base ` C ) ) |
| 40 | 24 | ffvelcdmda | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` C ) ) |
| 41 | 40 | adantrr | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` C ) ) |
| 42 | 41 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` C ) ) |
| 43 | 26 | ad2antrr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( 1st ` f ) ` y ) e. ( Base ` C ) ) |
| 44 | simprr | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) |
|
| 45 | 44 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) |
| 46 | 23 | ad3antrrr | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
| 47 | 21 28 16 46 32 33 | funcf2 | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( x ( 2nd ` f ) y ) : ( x ( Hom ` A ) y ) --> ( ( ( 1st ` f ) ` x ) ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) |
| 48 | 47 | ffvelcdmda | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( x ( 2nd ` f ) y ) ` k ) e. ( ( ( 1st ` f ) ` x ) ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) |
| 49 | 15 16 35 36 37 38 39 42 43 45 48 | comfeqval | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) |
| 50 | 49 | eqeq2d | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 51 | 34 50 | reueqbidva | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 52 | 27 51 | raleqbidva | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 53 | 14 52 | raleqbidva | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 54 | 53 | pm5.32da | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
| 55 | 3 | ad2antrr | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 56 | simplrr | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> w e. ( Base ` C ) ) |
|
| 57 | 15 16 17 55 56 40 | homfeqval | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) = ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) |
| 58 | 57 | eleq2d | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) <-> m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) |
| 59 | 58 | pm5.32da | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) <-> ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) ) |
| 60 | 13 | eleq2d | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( x e. ( Base ` A ) <-> x e. ( Base ` B ) ) ) |
| 61 | 60 | anbi1d | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) <-> ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) ) |
| 62 | 59 61 | bitrd | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) <-> ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) ) |
| 63 | 62 | anbi1d | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
| 64 | 54 63 | bitrd | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
| 65 | 64 | opabbidv | |- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 66 | 9 11 65 | mpoeq123dva | |- ( ph -> ( f e. ( A Func C ) , w e. ( Base ` C ) |-> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( B Func D ) , w e. ( Base ` D ) |-> { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 67 | 21 15 28 16 35 | upfval | |- ( A UP C ) = ( f e. ( A Func C ) , w e. ( Base ` C ) |-> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 68 | eqid | |- ( Base ` B ) = ( Base ` B ) |
|
| 69 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 70 | 68 69 29 17 36 | upfval | |- ( B UP D ) = ( f e. ( B Func D ) , w e. ( Base ` D ) |-> { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 71 | 66 67 70 | 3eqtr4g | |- ( ph -> ( A UP C ) = ( B UP D ) ) |