This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uppropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| uppropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | ||
| uppropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| uppropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| uppropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| uppropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| uppropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| uppropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | uppropd | ⊢ ( 𝜑 → ( 𝐴 UP 𝐶 ) = ( 𝐵 UP 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uppropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| 2 | uppropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | |
| 3 | uppropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 4 | uppropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 5 | uppropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | uppropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 7 | uppropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | uppropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 9 | 1 2 3 4 5 6 7 8 | funcpropd | ⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 10 | 3 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 12 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 16 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 17 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 18 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 19 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) | |
| 20 | 19 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 22 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) | |
| 23 | 22 | func1st2nd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
| 24 | 21 15 23 | funcf1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 26 | 25 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 27 | 15 16 17 18 20 26 | homfeqval | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) = ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) |
| 28 | eqid | ⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) | |
| 29 | eqid | ⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) | |
| 30 | 1 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 31 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) | |
| 32 | 31 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 33 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 34 | 21 28 29 30 32 33 | homfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 35 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 36 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 37 | 18 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 38 | 4 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 39 | 20 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 40 | 24 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 41 | 40 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 42 | 41 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 43 | 26 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 44 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) | |
| 45 | 44 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 46 | 23 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
| 47 | 21 28 16 46 32 33 | funcf2 | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) |
| 48 | 47 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) |
| 49 | 15 16 35 36 37 38 39 42 43 45 48 | comfeqval | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) |
| 50 | 49 | eqeq2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 51 | 34 50 | reueqbidva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 52 | 27 51 | raleqbidva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 53 | 14 52 | raleqbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 54 | 53 | pm5.32da | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
| 55 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 56 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) | |
| 57 | 15 16 17 55 56 40 | homfeqval | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) = ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 58 | 57 | eleq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) |
| 59 | 58 | pm5.32da | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 60 | 13 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↔ 𝑥 ∈ ( Base ‘ 𝐵 ) ) ) |
| 61 | 60 | anbi1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 62 | 59 61 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 63 | 62 | anbi1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
| 64 | 54 63 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
| 65 | 64 | opabbidv | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 66 | 9 11 65 | mpoeq123dva | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) ) |
| 67 | 21 15 28 16 35 | upfval | ⊢ ( 𝐴 UP 𝐶 ) = ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 68 | eqid | ⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) | |
| 69 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 70 | 68 69 29 17 36 | upfval | ⊢ ( 𝐵 UP 𝐷 ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 71 | 66 67 70 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐴 UP 𝐶 ) = ( 𝐵 UP 𝐷 ) ) |