This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfeqval.b | |- B = ( Base ` C ) |
|
| comfeqval.h | |- H = ( Hom ` C ) |
||
| comfeqval.1 | |- .x. = ( comp ` C ) |
||
| comfeqval.2 | |- .xb = ( comp ` D ) |
||
| comfeqval.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| comfeqval.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| comfeqval.x | |- ( ph -> X e. B ) |
||
| comfeqval.y | |- ( ph -> Y e. B ) |
||
| comfeqval.z | |- ( ph -> Z e. B ) |
||
| comfeqval.f | |- ( ph -> F e. ( X H Y ) ) |
||
| comfeqval.g | |- ( ph -> G e. ( Y H Z ) ) |
||
| Assertion | comfeqval | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G ( <. X , Y >. .xb Z ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqval.b | |- B = ( Base ` C ) |
|
| 2 | comfeqval.h | |- H = ( Hom ` C ) |
|
| 3 | comfeqval.1 | |- .x. = ( comp ` C ) |
|
| 4 | comfeqval.2 | |- .xb = ( comp ` D ) |
|
| 5 | comfeqval.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 6 | comfeqval.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 7 | comfeqval.x | |- ( ph -> X e. B ) |
|
| 8 | comfeqval.y | |- ( ph -> Y e. B ) |
|
| 9 | comfeqval.z | |- ( ph -> Z e. B ) |
|
| 10 | comfeqval.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 11 | comfeqval.g | |- ( ph -> G e. ( Y H Z ) ) |
|
| 12 | 6 | oveqd | |- ( ph -> ( <. X , Y >. ( comf ` C ) Z ) = ( <. X , Y >. ( comf ` D ) Z ) ) |
| 13 | 12 | oveqd | |- ( ph -> ( G ( <. X , Y >. ( comf ` C ) Z ) F ) = ( G ( <. X , Y >. ( comf ` D ) Z ) F ) ) |
| 14 | eqid | |- ( comf ` C ) = ( comf ` C ) |
|
| 15 | 14 1 2 3 7 8 9 10 11 | comfval | |- ( ph -> ( G ( <. X , Y >. ( comf ` C ) Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
| 16 | eqid | |- ( comf ` D ) = ( comf ` D ) |
|
| 17 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 18 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 19 | 5 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 20 | 1 19 | eqtrid | |- ( ph -> B = ( Base ` D ) ) |
| 21 | 7 20 | eleqtrd | |- ( ph -> X e. ( Base ` D ) ) |
| 22 | 8 20 | eleqtrd | |- ( ph -> Y e. ( Base ` D ) ) |
| 23 | 9 20 | eleqtrd | |- ( ph -> Z e. ( Base ` D ) ) |
| 24 | 1 2 18 5 7 8 | homfeqval | |- ( ph -> ( X H Y ) = ( X ( Hom ` D ) Y ) ) |
| 25 | 10 24 | eleqtrd | |- ( ph -> F e. ( X ( Hom ` D ) Y ) ) |
| 26 | 1 2 18 5 8 9 | homfeqval | |- ( ph -> ( Y H Z ) = ( Y ( Hom ` D ) Z ) ) |
| 27 | 11 26 | eleqtrd | |- ( ph -> G e. ( Y ( Hom ` D ) Z ) ) |
| 28 | 16 17 18 4 21 22 23 25 27 | comfval | |- ( ph -> ( G ( <. X , Y >. ( comf ` D ) Z ) F ) = ( G ( <. X , Y >. .xb Z ) F ) ) |
| 29 | 13 15 28 | 3eqtr3d | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G ( <. X , Y >. .xb Z ) F ) ) |