This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025) (Proof shortened by Zhi Wang, 12-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | |- B = ( Base ` D ) |
|
| upfval.c | |- C = ( Base ` E ) |
||
| upfval.h | |- H = ( Hom ` D ) |
||
| upfval.j | |- J = ( Hom ` E ) |
||
| upfval.o | |- O = ( comp ` E ) |
||
| Assertion | upfval | |- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | |- B = ( Base ` D ) |
|
| 2 | upfval.c | |- C = ( Base ` E ) |
|
| 3 | upfval.h | |- H = ( Hom ` D ) |
|
| 4 | upfval.j | |- J = ( Hom ` E ) |
|
| 5 | upfval.o | |- O = ( comp ` E ) |
|
| 6 | fvexd | |- ( ( d = D /\ e = E ) -> ( Base ` d ) e. _V ) |
|
| 7 | fveq2 | |- ( d = D -> ( Base ` d ) = ( Base ` D ) ) |
|
| 8 | 7 | adantr | |- ( ( d = D /\ e = E ) -> ( Base ` d ) = ( Base ` D ) ) |
| 9 | 8 1 | eqtr4di | |- ( ( d = D /\ e = E ) -> ( Base ` d ) = B ) |
| 10 | fvexd | |- ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) e. _V ) |
|
| 11 | simplr | |- ( ( ( d = D /\ e = E ) /\ b = B ) -> e = E ) |
|
| 12 | 11 | fveq2d | |- ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) = ( Base ` E ) ) |
| 13 | 12 2 | eqtr4di | |- ( ( ( d = D /\ e = E ) /\ b = B ) -> ( Base ` e ) = C ) |
| 14 | fvexd | |- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) e. _V ) |
|
| 15 | simplll | |- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> d = D ) |
|
| 16 | 15 | fveq2d | |- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) = ( Hom ` D ) ) |
| 17 | 16 3 | eqtr4di | |- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> ( Hom ` d ) = H ) |
| 18 | fvexd | |- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) e. _V ) |
|
| 19 | simp-4r | |- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> e = E ) |
|
| 20 | 19 | fveq2d | |- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) = ( Hom ` E ) ) |
| 21 | 20 4 | eqtr4di | |- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> ( Hom ` e ) = J ) |
| 22 | fvexd | |- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) e. _V ) |
|
| 23 | simp-5r | |- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> e = E ) |
|
| 24 | 23 | fveq2d | |- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) = ( comp ` E ) ) |
| 25 | 24 5 | eqtr4di | |- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> ( comp ` e ) = O ) |
| 26 | simp-6l | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> d = D ) |
|
| 27 | simp-6r | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> e = E ) |
|
| 28 | 26 27 | oveq12d | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( d Func e ) = ( D Func E ) ) |
| 29 | simp-4r | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> c = C ) |
|
| 30 | simp-5r | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> b = B ) |
|
| 31 | 30 | eleq2d | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( x e. b <-> x e. B ) ) |
| 32 | simplr | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> j = J ) |
|
| 33 | 32 | oveqd | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( w j ( ( 1st ` f ) ` x ) ) = ( w J ( ( 1st ` f ) ` x ) ) ) |
| 34 | 33 | eleq2d | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( m e. ( w j ( ( 1st ` f ) ` x ) ) <-> m e. ( w J ( ( 1st ` f ) ` x ) ) ) ) |
| 35 | 31 34 | anbi12d | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) <-> ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) ) ) |
| 36 | 32 | oveqd | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( w j ( ( 1st ` f ) ` y ) ) = ( w J ( ( 1st ` f ) ` y ) ) ) |
| 37 | simplr | |- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> h = H ) |
|
| 38 | 37 | oveqdr | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( x h y ) = ( x H y ) ) |
| 39 | simpr | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> o = O ) |
|
| 40 | 39 | oveqd | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) = ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) ) |
| 41 | 40 | oveqd | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) |
| 42 | 41 | eqeq2d | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 43 | 38 42 | reueqbidv | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 44 | 36 43 | raleqbidv | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 45 | 30 44 | raleqbidv | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 46 | 35 45 | anbi12d | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
| 47 | 46 | opabbidv | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 48 | 28 29 47 | mpoeq123dv | |- ( ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) /\ o = O ) -> ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 49 | 22 25 48 | csbied2 | |- ( ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) /\ j = J ) -> [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 50 | 18 21 49 | csbied2 | |- ( ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) /\ h = H ) -> [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 51 | 14 17 50 | csbied2 | |- ( ( ( ( d = D /\ e = E ) /\ b = B ) /\ c = C ) -> [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 52 | 10 13 51 | csbied2 | |- ( ( ( d = D /\ e = E ) /\ b = B ) -> [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 53 | 6 9 52 | csbied2 | |- ( ( d = D /\ e = E ) -> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 54 | df-up | |- UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
|
| 55 | ovex | |- ( D Func E ) e. _V |
|
| 56 | 2 | fvexi | |- C e. _V |
| 57 | 55 56 | mpoex | |- ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) e. _V |
| 58 | 53 54 57 | ovmpoa | |- ( ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 59 | reldmup | |- Rel dom UP |
|
| 60 | 59 | ovprc | |- ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = (/) ) |
| 61 | reldmfunc | |- Rel dom Func |
|
| 62 | 61 | ovprc | |- ( -. ( D e. _V /\ E e. _V ) -> ( D Func E ) = (/) ) |
| 63 | 62 | orcd | |- ( -. ( D e. _V /\ E e. _V ) -> ( ( D Func E ) = (/) \/ C = (/) ) ) |
| 64 | 0mpo0 | |- ( ( ( D Func E ) = (/) \/ C = (/) ) -> ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) = (/) ) |
|
| 65 | 63 64 | syl | |- ( -. ( D e. _V /\ E e. _V ) -> ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) = (/) ) |
| 66 | 60 65 | eqtr4d | |- ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 67 | 58 66 | pm2.61i | |- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |