This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1imaeq | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) = ( F " D ) <-> C = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1imass | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) C_ ( F " D ) <-> C C_ D ) ) |
|
| 2 | f1imass | |- ( ( F : A -1-1-> B /\ ( D C_ A /\ C C_ A ) ) -> ( ( F " D ) C_ ( F " C ) <-> D C_ C ) ) |
|
| 3 | 2 | ancom2s | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " D ) C_ ( F " C ) <-> D C_ C ) ) |
| 4 | 1 3 | anbi12d | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( ( F " C ) C_ ( F " D ) /\ ( F " D ) C_ ( F " C ) ) <-> ( C C_ D /\ D C_ C ) ) ) |
| 5 | eqss | |- ( ( F " C ) = ( F " D ) <-> ( ( F " C ) C_ ( F " D ) /\ ( F " D ) C_ ( F " C ) ) ) |
|
| 6 | eqss | |- ( C = D <-> ( C C_ D /\ D C_ C ) ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) = ( F " D ) <-> C = D ) ) |