This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for upgrimtrls . (Contributed by AV, 29-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimtrls.t | |- ( ph -> F ( Trails ` G ) P ) |
||
| Assertion | upgrimtrlslem1 | |- ( ( ph /\ X e. dom F ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimtrls.t | |- ( ph -> F ( Trails ` G ) P ) |
|
| 8 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 9 | 3 8 | syl | |- ( ph -> G e. UHGraph ) |
| 10 | uspgruhgr | |- ( H e. USPGraph -> H e. UHGraph ) |
|
| 11 | 4 10 | syl | |- ( ph -> H e. UHGraph ) |
| 12 | 9 11 | jca | |- ( ph -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ X e. dom F ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 14 | 5 | adantr | |- ( ( ph /\ X e. dom F ) -> N e. ( G GraphIso H ) ) |
| 15 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 16 | 9 15 | syl | |- ( ph -> Fun I ) |
| 17 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 18 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 19 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 20 | 19 | ffdmd | |- ( F e. Word dom I -> F : dom F --> dom I ) |
| 21 | 18 20 | syl | |- ( F ( Walks ` G ) P -> F : dom F --> dom I ) |
| 22 | 7 17 21 | 3syl | |- ( ph -> F : dom F --> dom I ) |
| 23 | 22 | ffvelcdmda | |- ( ( ph /\ X e. dom F ) -> ( F ` X ) e. dom I ) |
| 24 | 1 | iedgedg | |- ( ( Fun I /\ ( F ` X ) e. dom I ) -> ( I ` ( F ` X ) ) e. ( Edg ` G ) ) |
| 25 | 16 23 24 | syl2an2r | |- ( ( ph /\ X e. dom F ) -> ( I ` ( F ` X ) ) e. ( Edg ` G ) ) |
| 26 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 27 | eqid | |- ( Edg ` H ) = ( Edg ` H ) |
|
| 28 | 26 27 | uhgrimedgi | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( N e. ( G GraphIso H ) /\ ( I ` ( F ` X ) ) e. ( Edg ` G ) ) ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) ) |
| 29 | 13 14 25 28 | syl12anc | |- ( ( ph /\ X e. dom F ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) ) |