This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upeu3.i | |- ( ph -> I = ( Iso ` D ) ) |
|
| upeu3.o | |- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) |
||
| upeu3.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
||
| upeu4.k | |- ( ph -> K e. ( X I Y ) ) |
||
| upeu4.n | |- ( ph -> N = ( ( ( X G Y ) ` K ) .o. M ) ) |
||
| Assertion | upeu4 | |- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upeu3.i | |- ( ph -> I = ( Iso ` D ) ) |
|
| 2 | upeu3.o | |- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) |
|
| 3 | upeu3.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
|
| 4 | upeu4.k | |- ( ph -> K e. ( X I Y ) ) |
|
| 5 | upeu4.n | |- ( ph -> N = ( ( ( X G Y ) ` K ) .o. M ) ) |
|
| 6 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 7 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 10 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 11 | 3 | uprcl2 | |- ( ph -> F ( D Func E ) G ) |
| 12 | 3 6 | uprcl4 | |- ( ph -> X e. ( Base ` D ) ) |
| 13 | 11 | funcrcl2 | |- ( ph -> D e. Cat ) |
| 14 | isofn | |- ( D e. Cat -> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 16 | 1 | fneq1d | |- ( ph -> ( I Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) ) |
| 17 | 15 16 | mpbird | |- ( ph -> I Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 18 | fnov | |- ( I Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> I = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) ) |
|
| 19 | 17 18 | sylib | |- ( ph -> I = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) ) |
| 20 | 19 | oveqd | |- ( ph -> ( X I Y ) = ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) ) |
| 21 | 4 20 | eleqtrd | |- ( ph -> K e. ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) ) |
| 22 | eqid | |- ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) |
|
| 23 | 22 | elmpocl2 | |- ( K e. ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) -> Y e. ( Base ` D ) ) |
| 24 | 21 23 | syl | |- ( ph -> Y e. ( Base ` D ) ) |
| 25 | 3 7 | uprcl3 | |- ( ph -> W e. ( Base ` E ) ) |
| 26 | 3 9 | uprcl5 | |- ( ph -> M e. ( W ( Hom ` E ) ( F ` X ) ) ) |
| 27 | 6 8 9 10 3 | isup2 | |- ( ph -> A. x e. ( Base ` D ) A. f e. ( W ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` D ) x ) f = ( ( ( X G x ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) |
| 28 | eqid | |- ( Iso ` D ) = ( Iso ` D ) |
|
| 29 | 1 | oveqd | |- ( ph -> ( X I Y ) = ( X ( Iso ` D ) Y ) ) |
| 30 | 4 29 | eleqtrd | |- ( ph -> K e. ( X ( Iso ` D ) Y ) ) |
| 31 | 2 | oveqd | |- ( ph -> ( ( ( X G Y ) ` K ) .o. M ) = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 32 | 5 31 | eqtrd | |- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 33 | 6 7 8 9 10 11 12 24 25 26 27 28 30 32 | upeu2 | |- ( ph -> ( N e. ( W ( Hom ` E ) ( F ` Y ) ) /\ A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) ) |
| 34 | 33 | simprd | |- ( ph -> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) |
| 35 | 33 | simpld | |- ( ph -> N e. ( W ( Hom ` E ) ( F ` Y ) ) ) |
| 36 | 6 7 8 9 10 25 11 24 35 | isup | |- ( ph -> ( Y ( <. F , G >. ( D UP E ) W ) N <-> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) ) |
| 37 | 34 36 | mpbird | |- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) |