This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofn | |- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | |- ( x e. _V -> dom x e. _V ) |
|
| 2 | 1 | adantl | |- ( ( C e. Cat /\ x e. _V ) -> dom x e. _V ) |
| 3 | 2 | ralrimiva | |- ( C e. Cat -> A. x e. _V dom x e. _V ) |
| 4 | eqid | |- ( x e. _V |-> dom x ) = ( x e. _V |-> dom x ) |
|
| 5 | 4 | fnmpt | |- ( A. x e. _V dom x e. _V -> ( x e. _V |-> dom x ) Fn _V ) |
| 6 | 3 5 | syl | |- ( C e. Cat -> ( x e. _V |-> dom x ) Fn _V ) |
| 7 | ovex | |- ( x ( Sect ` C ) y ) e. _V |
|
| 8 | 7 | inex1 | |- ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V |
| 9 | 8 | a1i | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V ) |
| 10 | 9 | ralrimivva | |- ( C e. Cat -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V ) |
| 11 | eqid | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
|
| 12 | 11 | fnmpo | |- ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 13 | 10 12 | syl | |- ( C e. Cat -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 14 | df-inv | |- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
|
| 15 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 16 | fveq2 | |- ( c = C -> ( Sect ` c ) = ( Sect ` C ) ) |
|
| 17 | 16 | oveqd | |- ( c = C -> ( x ( Sect ` c ) y ) = ( x ( Sect ` C ) y ) ) |
| 18 | 16 | oveqd | |- ( c = C -> ( y ( Sect ` c ) x ) = ( y ( Sect ` C ) x ) ) |
| 19 | 18 | cnveqd | |- ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y ( Sect ` C ) x ) ) |
| 20 | 17 19 | ineq12d | |- ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
| 21 | 15 15 20 | mpoeq123dv | |- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
| 22 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 23 | fvex | |- ( Base ` C ) e. _V |
|
| 24 | 23 23 | pm3.2i | |- ( ( Base ` C ) e. _V /\ ( Base ` C ) e. _V ) |
| 25 | mpoexga | |- ( ( ( Base ` C ) e. _V /\ ( Base ` C ) e. _V ) -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) e. _V ) |
|
| 26 | 24 25 | mp1i | |- ( C e. Cat -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) e. _V ) |
| 27 | 14 21 22 26 | fvmptd3 | |- ( C e. Cat -> ( Inv ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
| 28 | 27 | fneq1d | |- ( C e. Cat -> ( ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 29 | 13 28 | mpbird | |- ( C e. Cat -> ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 30 | ssv | |- ran ( Inv ` C ) C_ _V |
|
| 31 | 30 | a1i | |- ( C e. Cat -> ran ( Inv ` C ) C_ _V ) |
| 32 | fnco | |- ( ( ( x e. _V |-> dom x ) Fn _V /\ ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ran ( Inv ` C ) C_ _V ) -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
|
| 33 | 6 29 31 32 | syl3anc | |- ( C e. Cat -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 34 | isofval | |- ( C e. Cat -> ( Iso ` C ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |
|
| 35 | 34 | fneq1d | |- ( C e. Cat -> ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 36 | 33 35 | mpbird | |- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |