This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uptpos . (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| uptpos.h | |- ( ph -> tpos G = H ) |
||
| Assertion | uptposlem | |- ( ph -> tpos H = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) |
|
| 2 | uptpos.h | |- ( ph -> tpos G = H ) |
|
| 3 | 2 | tposeqd | |- ( ph -> tpos tpos G = tpos H ) |
| 4 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 5 | 1 | uprcl2 | |- ( ph -> F ( O Func P ) G ) |
| 6 | 4 5 | funcfn2 | |- ( ph -> G Fn ( ( Base ` O ) X. ( Base ` O ) ) ) |
| 7 | fnrel | |- ( G Fn ( ( Base ` O ) X. ( Base ` O ) ) -> Rel G ) |
|
| 8 | 6 7 | syl | |- ( ph -> Rel G ) |
| 9 | relxp | |- Rel ( ( Base ` O ) X. ( Base ` O ) ) |
|
| 10 | 6 | fndmd | |- ( ph -> dom G = ( ( Base ` O ) X. ( Base ` O ) ) ) |
| 11 | 10 | releqd | |- ( ph -> ( Rel dom G <-> Rel ( ( Base ` O ) X. ( Base ` O ) ) ) ) |
| 12 | 9 11 | mpbiri | |- ( ph -> Rel dom G ) |
| 13 | tpostpos2 | |- ( ( Rel G /\ Rel dom G ) -> tpos tpos G = G ) |
|
| 14 | 8 12 13 | syl2anc | |- ( ph -> tpos tpos G = G ) |
| 15 | 3 14 | eqtr3d | |- ( ph -> tpos H = G ) |