This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upeu3.i | ⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐷 ) ) | |
| upeu3.o | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) | ||
| upeu3.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) | ||
| upeu4.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| upeu4.n | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ⚬ 𝑀 ) ) | ||
| Assertion | upeu4 | ⊢ ( 𝜑 → 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upeu3.i | ⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐷 ) ) | |
| 2 | upeu3.o | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) | |
| 3 | upeu3.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) | |
| 4 | upeu4.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 5 | upeu4.n | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ⚬ 𝑀 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 10 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 11 | 3 | uprcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 12 | 3 6 | uprcl4 | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 13 | 11 | funcrcl2 | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 14 | isofn | ⊢ ( 𝐷 ∈ Cat → ( Iso ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( Iso ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
| 16 | 1 | fneq1d | ⊢ ( 𝜑 → ( 𝐼 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↔ ( Iso ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) ) |
| 17 | 15 16 | mpbird | ⊢ ( 𝜑 → 𝐼 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
| 18 | fnov | ⊢ ( 𝐼 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↔ 𝐼 = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
| 20 | 19 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) 𝑌 ) ) |
| 21 | 4 20 | eleqtrd | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) 𝑌 ) ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) | |
| 23 | 22 | elmpocl2 | ⊢ ( 𝐾 ∈ ( 𝑋 ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 24 | 21 23 | syl | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 25 | 3 7 | uprcl3 | ⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐸 ) ) |
| 26 | 3 9 | uprcl5 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 27 | 6 8 9 10 3 | isup2 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑥 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) |
| 28 | eqid | ⊢ ( Iso ‘ 𝐷 ) = ( Iso ‘ 𝐷 ) | |
| 29 | 1 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
| 30 | 4 29 | eleqtrd | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
| 31 | 2 | oveqd | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ⚬ 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 32 | 5 31 | eqtrd | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 33 | 6 7 8 9 10 11 12 24 25 26 27 28 30 32 | upeu2 | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) ) |
| 34 | 33 | simprd | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) |
| 35 | 33 | simpld | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 36 | 6 7 8 9 10 25 11 24 35 | isup | ⊢ ( 𝜑 → ( 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) ) |
| 37 | 34 36 | mpbird | ⊢ ( 𝜑 → 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ) |