This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isup2.b | |- B = ( Base ` D ) |
|
| isup2.h | |- H = ( Hom ` D ) |
||
| isup2.j | |- J = ( Hom ` E ) |
||
| isup2.o | |- O = ( comp ` E ) |
||
| isup2.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
||
| Assertion | isup2 | |- ( ph -> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isup2.b | |- B = ( Base ` D ) |
|
| 2 | isup2.h | |- H = ( Hom ` D ) |
|
| 3 | isup2.j | |- J = ( Hom ` E ) |
|
| 4 | isup2.o | |- O = ( comp ` E ) |
|
| 5 | isup2.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
|
| 6 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 7 | 5 6 | uprcl3 | |- ( ph -> W e. ( Base ` E ) ) |
| 8 | 5 | uprcl2 | |- ( ph -> F ( D Func E ) G ) |
| 9 | 5 1 | uprcl4 | |- ( ph -> X e. B ) |
| 10 | 5 3 | uprcl5 | |- ( ph -> M e. ( W J ( F ` X ) ) ) |
| 11 | 1 6 2 3 4 7 8 9 10 | isup | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) |
| 12 | 5 11 | mpbid | |- ( ph -> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) |