This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upeu3.i | ||
| upeu3.o | No typesetting found for |- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) with typecode |- | ||
| upeu3.x | No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |- | ||
| upeu4.k | |||
| upeu4.n | No typesetting found for |- ( ph -> N = ( ( ( X G Y ) ` K ) .o. M ) ) with typecode |- | ||
| Assertion | upeu4 | Could not format assertion : No typesetting found for |- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upeu3.i | ||
| 2 | upeu3.o | Could not format ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) : No typesetting found for |- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) with typecode |- | |
| 3 | upeu3.x | Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |- | |
| 4 | upeu4.k | ||
| 5 | upeu4.n | Could not format ( ph -> N = ( ( ( X G Y ) ` K ) .o. M ) ) : No typesetting found for |- ( ph -> N = ( ( ( X G Y ) ` K ) .o. M ) ) with typecode |- | |
| 6 | eqid | ||
| 7 | eqid | ||
| 8 | eqid | ||
| 9 | eqid | ||
| 10 | eqid | ||
| 11 | 3 | uprcl2 | |
| 12 | 3 6 | uprcl4 | |
| 13 | 11 | funcrcl2 | |
| 14 | isofn | ||
| 15 | 13 14 | syl | |
| 16 | 1 | fneq1d | |
| 17 | 15 16 | mpbird | |
| 18 | fnov | ||
| 19 | 17 18 | sylib | |
| 20 | 19 | oveqd | |
| 21 | 4 20 | eleqtrd | |
| 22 | eqid | ||
| 23 | 22 | elmpocl2 | |
| 24 | 21 23 | syl | |
| 25 | 3 7 | uprcl3 | |
| 26 | 3 9 | uprcl5 | |
| 27 | 6 8 9 10 3 | isup2 | |
| 28 | eqid | ||
| 29 | 1 | oveqd | |
| 30 | 4 29 | eleqtrd | |
| 31 | 2 | oveqd | Could not format ( ph -> ( ( ( X G Y ) ` K ) .o. M ) = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) : No typesetting found for |- ( ph -> ( ( ( X G Y ) ` K ) .o. M ) = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) with typecode |- |
| 32 | 5 31 | eqtrd | |
| 33 | 6 7 8 9 10 11 12 24 25 26 27 28 30 32 | upeu2 | |
| 34 | 33 | simprd | |
| 35 | 33 | simpld | |
| 36 | 6 7 8 9 10 25 11 24 35 | isup | Could not format ( ph -> ( Y ( <. F , G >. ( D UP E ) W ) N <-> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) ) : No typesetting found for |- ( ph -> ( Y ( <. F , G >. ( D UP E ) W ) N <-> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) ) with typecode |- |
| 37 | 34 36 | mpbird | Could not format ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) : No typesetting found for |- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) with typecode |- |