This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl and df-inr , is thecoproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of Adamek p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | updjud.f | |- ( ph -> F : A --> C ) |
|
| updjud.g | |- ( ph -> G : B --> C ) |
||
| updjud.a | |- ( ph -> A e. V ) |
||
| updjud.b | |- ( ph -> B e. W ) |
||
| Assertion | updjud | |- ( ph -> E! h ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | updjud.f | |- ( ph -> F : A --> C ) |
|
| 2 | updjud.g | |- ( ph -> G : B --> C ) |
|
| 3 | updjud.a | |- ( ph -> A e. V ) |
|
| 4 | updjud.b | |- ( ph -> B e. W ) |
|
| 5 | 3 4 | jca | |- ( ph -> ( A e. V /\ B e. W ) ) |
| 6 | djuex | |- ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V ) |
|
| 7 | mptexg | |- ( ( A |_| B ) e. _V -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) e. _V ) |
|
| 8 | 5 6 7 | 3syl | |- ( ph -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) e. _V ) |
| 9 | feq1 | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h : ( A |_| B ) --> C <-> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C ) ) |
|
| 10 | coeq1 | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ) |
|
| 11 | 10 | eqeq1d | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h o. ( inl |` A ) ) = F <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F ) ) |
| 12 | coeq1 | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ) |
|
| 13 | 12 | eqeq1d | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h o. ( inr |` B ) ) = G <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) |
| 14 | 9 11 13 | 3anbi123d | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) ) |
| 15 | eqeq1 | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h = k <-> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) |
|
| 16 | 15 | imbi2d | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) <-> ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 17 | 16 | ralbidv | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) <-> A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 18 | 14 17 | anbi12d | |- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) <-> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) |
| 19 | 18 | adantl | |- ( ( ph /\ h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ) -> ( ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) <-> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) |
| 20 | eqid | |- ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
|
| 21 | 1 2 20 | updjudhf | |- ( ph -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C ) |
| 22 | 1 2 20 | updjudhcoinlf | |- ( ph -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F ) |
| 23 | 1 2 20 | updjudhcoinrg | |- ( ph -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) |
| 24 | simpr | |- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) |
|
| 25 | eqeq2 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ( k o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) <-> ( k o. ( inl |` A ) ) = F ) ) |
|
| 26 | fvres | |- ( z e. A -> ( ( inl |` A ) ` z ) = ( inl ` z ) ) |
|
| 27 | 26 | eqcomd | |- ( z e. A -> ( inl ` z ) = ( ( inl |` A ) ` z ) ) |
| 28 | 27 | eqeq2d | |- ( z e. A -> ( y = ( inl ` z ) <-> y = ( ( inl |` A ) ` z ) ) ) |
| 29 | 28 | adantl | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( inl ` z ) <-> y = ( ( inl |` A ) ` z ) ) ) |
| 30 | fveq1 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( k o. ( inl |` A ) ) ` z ) ) |
|
| 31 | 30 | ad2antrr | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( k o. ( inl |` A ) ) ` z ) ) |
| 32 | inlresf | |- ( inl |` A ) : A --> ( A |_| B ) |
|
| 33 | ffn | |- ( ( inl |` A ) : A --> ( A |_| B ) -> ( inl |` A ) Fn A ) |
|
| 34 | 32 33 | mp1i | |- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) -> ( inl |` A ) Fn A ) |
| 35 | fvco2 | |- ( ( ( inl |` A ) Fn A /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) |
|
| 36 | 34 35 | sylan | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) |
| 37 | fvco2 | |- ( ( ( inl |` A ) Fn A /\ z e. A ) -> ( ( k o. ( inl |` A ) ) ` z ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
|
| 38 | 34 37 | sylan | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( k o. ( inl |` A ) ) ` z ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
| 39 | 31 36 38 | 3eqtr3d | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
| 40 | fveq2 | |- ( y = ( ( inl |` A ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) |
|
| 41 | fveq2 | |- ( y = ( ( inl |` A ) ` z ) -> ( k ` y ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
|
| 42 | 40 41 | eqeq12d | |- ( y = ( ( inl |` A ) ` z ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) = ( k ` ( ( inl |` A ) ` z ) ) ) ) |
| 43 | 39 42 | syl5ibrcom | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( ( inl |` A ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 44 | 29 43 | sylbid | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( inl ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 45 | 44 | expimpd | |- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 46 | 45 | ex | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 47 | 46 | eqcoms | |- ( ( k o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 48 | 25 47 | biimtrrdi | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ( k o. ( inl |` A ) ) = F -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 49 | 48 | com23 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ph -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 50 | 49 | 3ad2ant2 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ph -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 51 | 50 | impcom | |- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 52 | 51 | com12 | |- ( ( k o. ( inl |` A ) ) = F -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 53 | 52 | 3ad2ant2 | |- ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 54 | 53 | impcom | |- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 55 | 54 | com12 | |- ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 56 | 55 | rexlimiva | |- ( E. z e. A y = ( inl ` z ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 57 | eqeq2 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ( k o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) <-> ( k o. ( inr |` B ) ) = G ) ) |
|
| 58 | fvres | |- ( z e. B -> ( ( inr |` B ) ` z ) = ( inr ` z ) ) |
|
| 59 | 58 | eqcomd | |- ( z e. B -> ( inr ` z ) = ( ( inr |` B ) ` z ) ) |
| 60 | 59 | eqeq2d | |- ( z e. B -> ( y = ( inr ` z ) <-> y = ( ( inr |` B ) ` z ) ) ) |
| 61 | 60 | adantl | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( inr ` z ) <-> y = ( ( inr |` B ) ` z ) ) ) |
| 62 | fveq1 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( k o. ( inr |` B ) ) ` z ) ) |
|
| 63 | 62 | ad2antrr | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( k o. ( inr |` B ) ) ` z ) ) |
| 64 | inrresf | |- ( inr |` B ) : B --> ( A |_| B ) |
|
| 65 | ffn | |- ( ( inr |` B ) : B --> ( A |_| B ) -> ( inr |` B ) Fn B ) |
|
| 66 | 64 65 | mp1i | |- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) -> ( inr |` B ) Fn B ) |
| 67 | fvco2 | |- ( ( ( inr |` B ) Fn B /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) |
|
| 68 | 66 67 | sylan | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) |
| 69 | fvco2 | |- ( ( ( inr |` B ) Fn B /\ z e. B ) -> ( ( k o. ( inr |` B ) ) ` z ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
|
| 70 | 66 69 | sylan | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( k o. ( inr |` B ) ) ` z ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
| 71 | 63 68 70 | 3eqtr3d | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
| 72 | fveq2 | |- ( y = ( ( inr |` B ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) |
|
| 73 | fveq2 | |- ( y = ( ( inr |` B ) ` z ) -> ( k ` y ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
|
| 74 | 72 73 | eqeq12d | |- ( y = ( ( inr |` B ) ` z ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) = ( k ` ( ( inr |` B ) ` z ) ) ) ) |
| 75 | 71 74 | syl5ibrcom | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( ( inr |` B ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 76 | 61 75 | sylbid | |- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( inr ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 77 | 76 | expimpd | |- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 78 | 77 | ex | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 79 | 78 | eqcoms | |- ( ( k o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 80 | 57 79 | biimtrrdi | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ( k o. ( inr |` B ) ) = G -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 81 | 80 | com23 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ph -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 82 | 81 | 3ad2ant3 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ph -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 83 | 82 | impcom | |- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 84 | 83 | com12 | |- ( ( k o. ( inr |` B ) ) = G -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 85 | 84 | 3ad2ant3 | |- ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 86 | 85 | impcom | |- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 87 | 86 | com12 | |- ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 88 | 87 | rexlimiva | |- ( E. z e. B y = ( inr ` z ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 89 | 56 88 | jaoi | |- ( ( E. z e. A y = ( inl ` z ) \/ E. z e. B y = ( inr ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 90 | djur | |- ( y e. ( A |_| B ) -> ( E. z e. A y = ( inl ` z ) \/ E. z e. B y = ( inr ` z ) ) ) |
|
| 91 | 89 90 | syl11 | |- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( y e. ( A |_| B ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 92 | 91 | ralrimiv | |- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) |
| 93 | ffn | |- ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) |
|
| 94 | 93 | 3ad2ant1 | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) |
| 95 | 94 | adantl | |- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) |
| 96 | ffn | |- ( k : ( A |_| B ) --> C -> k Fn ( A |_| B ) ) |
|
| 97 | 96 | 3ad2ant1 | |- ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> k Fn ( A |_| B ) ) |
| 98 | eqfnfv | |- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) /\ k Fn ( A |_| B ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k <-> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
|
| 99 | 95 97 98 | syl2an | |- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k <-> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 100 | 92 99 | mpbird | |- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) |
| 101 | 100 | ex | |- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) |
| 102 | 101 | ralrimivw | |- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) |
| 103 | 24 102 | jca | |- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 104 | 103 | ex | |- ( ph -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) |
| 105 | 21 22 23 104 | mp3and | |- ( ph -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 106 | 8 19 105 | rspcedvd | |- ( ph -> E. h e. _V ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) ) |
| 107 | feq1 | |- ( h = k -> ( h : ( A |_| B ) --> C <-> k : ( A |_| B ) --> C ) ) |
|
| 108 | coeq1 | |- ( h = k -> ( h o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) ) |
|
| 109 | 108 | eqeq1d | |- ( h = k -> ( ( h o. ( inl |` A ) ) = F <-> ( k o. ( inl |` A ) ) = F ) ) |
| 110 | coeq1 | |- ( h = k -> ( h o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) ) |
|
| 111 | 110 | eqeq1d | |- ( h = k -> ( ( h o. ( inr |` B ) ) = G <-> ( k o. ( inr |` B ) ) = G ) ) |
| 112 | 107 109 111 | 3anbi123d | |- ( h = k -> ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) ) |
| 113 | 112 | reu8 | |- ( E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> E. h e. _V ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) ) |
| 114 | 106 113 | sylibr | |- ( ph -> E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |
| 115 | reuv | |- ( E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> E! h ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |
|
| 116 | 114 115 | sylib | |- ( ph -> E! h ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |