This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | updjud.f | |- ( ph -> F : A --> C ) |
|
| updjud.g | |- ( ph -> G : B --> C ) |
||
| updjudhf.h | |- H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
||
| Assertion | updjudhcoinlf | |- ( ph -> ( H o. ( inl |` A ) ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | updjud.f | |- ( ph -> F : A --> C ) |
|
| 2 | updjud.g | |- ( ph -> G : B --> C ) |
|
| 3 | updjudhf.h | |- H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
|
| 4 | 1 2 3 | updjudhf | |- ( ph -> H : ( A |_| B ) --> C ) |
| 5 | 4 | ffnd | |- ( ph -> H Fn ( A |_| B ) ) |
| 6 | inlresf | |- ( inl |` A ) : A --> ( A |_| B ) |
|
| 7 | ffn | |- ( ( inl |` A ) : A --> ( A |_| B ) -> ( inl |` A ) Fn A ) |
|
| 8 | 6 7 | mp1i | |- ( ph -> ( inl |` A ) Fn A ) |
| 9 | frn | |- ( ( inl |` A ) : A --> ( A |_| B ) -> ran ( inl |` A ) C_ ( A |_| B ) ) |
|
| 10 | 6 9 | mp1i | |- ( ph -> ran ( inl |` A ) C_ ( A |_| B ) ) |
| 11 | fnco | |- ( ( H Fn ( A |_| B ) /\ ( inl |` A ) Fn A /\ ran ( inl |` A ) C_ ( A |_| B ) ) -> ( H o. ( inl |` A ) ) Fn A ) |
|
| 12 | 5 8 10 11 | syl3anc | |- ( ph -> ( H o. ( inl |` A ) ) Fn A ) |
| 13 | 1 | ffnd | |- ( ph -> F Fn A ) |
| 14 | fvco2 | |- ( ( ( inl |` A ) Fn A /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( H ` ( ( inl |` A ) ` a ) ) ) |
|
| 15 | 8 14 | sylan | |- ( ( ph /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( H ` ( ( inl |` A ) ` a ) ) ) |
| 16 | fvres | |- ( a e. A -> ( ( inl |` A ) ` a ) = ( inl ` a ) ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ a e. A ) -> ( ( inl |` A ) ` a ) = ( inl ` a ) ) |
| 18 | 17 | fveq2d | |- ( ( ph /\ a e. A ) -> ( H ` ( ( inl |` A ) ` a ) ) = ( H ` ( inl ` a ) ) ) |
| 19 | fveqeq2 | |- ( x = ( inl ` a ) -> ( ( 1st ` x ) = (/) <-> ( 1st ` ( inl ` a ) ) = (/) ) ) |
|
| 20 | 2fveq3 | |- ( x = ( inl ` a ) -> ( F ` ( 2nd ` x ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
|
| 21 | 2fveq3 | |- ( x = ( inl ` a ) -> ( G ` ( 2nd ` x ) ) = ( G ` ( 2nd ` ( inl ` a ) ) ) ) |
|
| 22 | 19 20 21 | ifbieq12d | |- ( x = ( inl ` a ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) ) |
| 23 | 22 | adantl | |- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) ) |
| 24 | 1stinl | |- ( a e. A -> ( 1st ` ( inl ` a ) ) = (/) ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ a e. A ) -> ( 1st ` ( inl ` a ) ) = (/) ) |
| 26 | 25 | adantr | |- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> ( 1st ` ( inl ` a ) ) = (/) ) |
| 27 | 26 | iftrued | |- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
| 28 | 23 27 | eqtrd | |- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
| 29 | djulcl | |- ( a e. A -> ( inl ` a ) e. ( A |_| B ) ) |
|
| 30 | 29 | adantl | |- ( ( ph /\ a e. A ) -> ( inl ` a ) e. ( A |_| B ) ) |
| 31 | 1 | adantr | |- ( ( ph /\ a e. A ) -> F : A --> C ) |
| 32 | 2ndinl | |- ( a e. A -> ( 2nd ` ( inl ` a ) ) = a ) |
|
| 33 | 32 | adantl | |- ( ( ph /\ a e. A ) -> ( 2nd ` ( inl ` a ) ) = a ) |
| 34 | simpr | |- ( ( ph /\ a e. A ) -> a e. A ) |
|
| 35 | 33 34 | eqeltrd | |- ( ( ph /\ a e. A ) -> ( 2nd ` ( inl ` a ) ) e. A ) |
| 36 | 31 35 | ffvelcdmd | |- ( ( ph /\ a e. A ) -> ( F ` ( 2nd ` ( inl ` a ) ) ) e. C ) |
| 37 | 3 28 30 36 | fvmptd2 | |- ( ( ph /\ a e. A ) -> ( H ` ( inl ` a ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
| 38 | 18 37 | eqtrd | |- ( ( ph /\ a e. A ) -> ( H ` ( ( inl |` A ) ` a ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
| 39 | 33 | fveq2d | |- ( ( ph /\ a e. A ) -> ( F ` ( 2nd ` ( inl ` a ) ) ) = ( F ` a ) ) |
| 40 | 15 38 39 | 3eqtrd | |- ( ( ph /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( F ` a ) ) |
| 41 | 12 13 40 | eqfnfvd | |- ( ph -> ( H o. ( inl |` A ) ) = F ) |