This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | updjud.f | |- ( ph -> F : A --> C ) |
|
| updjud.g | |- ( ph -> G : B --> C ) |
||
| updjudhf.h | |- H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
||
| Assertion | updjudhcoinrg | |- ( ph -> ( H o. ( inr |` B ) ) = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | updjud.f | |- ( ph -> F : A --> C ) |
|
| 2 | updjud.g | |- ( ph -> G : B --> C ) |
|
| 3 | updjudhf.h | |- H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
|
| 4 | 1 2 3 | updjudhf | |- ( ph -> H : ( A |_| B ) --> C ) |
| 5 | 4 | ffnd | |- ( ph -> H Fn ( A |_| B ) ) |
| 6 | inrresf | |- ( inr |` B ) : B --> ( A |_| B ) |
|
| 7 | ffn | |- ( ( inr |` B ) : B --> ( A |_| B ) -> ( inr |` B ) Fn B ) |
|
| 8 | 6 7 | mp1i | |- ( ph -> ( inr |` B ) Fn B ) |
| 9 | frn | |- ( ( inr |` B ) : B --> ( A |_| B ) -> ran ( inr |` B ) C_ ( A |_| B ) ) |
|
| 10 | 6 9 | mp1i | |- ( ph -> ran ( inr |` B ) C_ ( A |_| B ) ) |
| 11 | fnco | |- ( ( H Fn ( A |_| B ) /\ ( inr |` B ) Fn B /\ ran ( inr |` B ) C_ ( A |_| B ) ) -> ( H o. ( inr |` B ) ) Fn B ) |
|
| 12 | 5 8 10 11 | syl3anc | |- ( ph -> ( H o. ( inr |` B ) ) Fn B ) |
| 13 | 2 | ffnd | |- ( ph -> G Fn B ) |
| 14 | fvco2 | |- ( ( ( inr |` B ) Fn B /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( H ` ( ( inr |` B ) ` b ) ) ) |
|
| 15 | 8 14 | sylan | |- ( ( ph /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( H ` ( ( inr |` B ) ` b ) ) ) |
| 16 | fvres | |- ( b e. B -> ( ( inr |` B ) ` b ) = ( inr ` b ) ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ b e. B ) -> ( ( inr |` B ) ` b ) = ( inr ` b ) ) |
| 18 | 17 | fveq2d | |- ( ( ph /\ b e. B ) -> ( H ` ( ( inr |` B ) ` b ) ) = ( H ` ( inr ` b ) ) ) |
| 19 | fveqeq2 | |- ( x = ( inr ` b ) -> ( ( 1st ` x ) = (/) <-> ( 1st ` ( inr ` b ) ) = (/) ) ) |
|
| 20 | 2fveq3 | |- ( x = ( inr ` b ) -> ( F ` ( 2nd ` x ) ) = ( F ` ( 2nd ` ( inr ` b ) ) ) ) |
|
| 21 | 2fveq3 | |- ( x = ( inr ` b ) -> ( G ` ( 2nd ` x ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
|
| 22 | 19 20 21 | ifbieq12d | |- ( x = ( inr ` b ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) ) |
| 23 | 22 | adantl | |- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) ) |
| 24 | 1stinr | |- ( b e. B -> ( 1st ` ( inr ` b ) ) = 1o ) |
|
| 25 | 1n0 | |- 1o =/= (/) |
|
| 26 | 25 | neii | |- -. 1o = (/) |
| 27 | eqeq1 | |- ( ( 1st ` ( inr ` b ) ) = 1o -> ( ( 1st ` ( inr ` b ) ) = (/) <-> 1o = (/) ) ) |
|
| 28 | 26 27 | mtbiri | |- ( ( 1st ` ( inr ` b ) ) = 1o -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
| 29 | 24 28 | syl | |- ( b e. B -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
| 30 | 29 | adantl | |- ( ( ph /\ b e. B ) -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
| 31 | 30 | adantr | |- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
| 32 | 31 | iffalsed | |- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
| 33 | 23 32 | eqtrd | |- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
| 34 | djurcl | |- ( b e. B -> ( inr ` b ) e. ( A |_| B ) ) |
|
| 35 | 34 | adantl | |- ( ( ph /\ b e. B ) -> ( inr ` b ) e. ( A |_| B ) ) |
| 36 | 2 | adantr | |- ( ( ph /\ b e. B ) -> G : B --> C ) |
| 37 | 2ndinr | |- ( b e. B -> ( 2nd ` ( inr ` b ) ) = b ) |
|
| 38 | 37 | adantl | |- ( ( ph /\ b e. B ) -> ( 2nd ` ( inr ` b ) ) = b ) |
| 39 | simpr | |- ( ( ph /\ b e. B ) -> b e. B ) |
|
| 40 | 38 39 | eqeltrd | |- ( ( ph /\ b e. B ) -> ( 2nd ` ( inr ` b ) ) e. B ) |
| 41 | 36 40 | ffvelcdmd | |- ( ( ph /\ b e. B ) -> ( G ` ( 2nd ` ( inr ` b ) ) ) e. C ) |
| 42 | 3 33 35 41 | fvmptd2 | |- ( ( ph /\ b e. B ) -> ( H ` ( inr ` b ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
| 43 | 18 42 | eqtrd | |- ( ( ph /\ b e. B ) -> ( H ` ( ( inr |` B ) ` b ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
| 44 | 38 | fveq2d | |- ( ( ph /\ b e. B ) -> ( G ` ( 2nd ` ( inr ` b ) ) ) = ( G ` b ) ) |
| 45 | 15 43 44 | 3eqtrd | |- ( ( ph /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( G ` b ) ) |
| 46 | 12 13 45 | eqfnfvd | |- ( ph -> ( H o. ( inr |` B ) ) = G ) |