This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| dvdsrneg.5 | |- N = ( invg ` R ) |
||
| Assertion | dvdsrneg | |- ( ( R e. Ring /\ X e. B ) -> X .|| ( N ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | dvdsrneg.5 | |- N = ( invg ` R ) |
|
| 4 | id | |- ( X e. B -> X e. B ) |
|
| 5 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 6 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 7 | 1 6 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 8 | 1 3 | grpinvcl | |- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
| 9 | 5 7 8 | syl2anc | |- ( R e. Ring -> ( N ` ( 1r ` R ) ) e. B ) |
| 10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 11 | 1 2 10 | dvdsrmul | |- ( ( X e. B /\ ( N ` ( 1r ` R ) ) e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) |
| 12 | 4 9 11 | syl2anr | |- ( ( R e. Ring /\ X e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) |
| 13 | simpl | |- ( ( R e. Ring /\ X e. B ) -> R e. Ring ) |
|
| 14 | simpr | |- ( ( R e. Ring /\ X e. B ) -> X e. B ) |
|
| 15 | 1 10 6 3 13 14 | ringnegl | |- ( ( R e. Ring /\ X e. B ) -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) = ( N ` X ) ) |
| 16 | 12 15 | breqtrd | |- ( ( R e. Ring /\ X e. B ) -> X .|| ( N ` X ) ) |