This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprbas.1 | |- O = ( oppR ` R ) |
|
| opprneg.2 | |- N = ( invg ` R ) |
||
| Assertion | opprneg | |- N = ( invg ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | opprneg.2 | |- N = ( invg ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 5 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 6 | 3 4 5 2 | grpinvfval | |- N = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) ) |
| 7 | 1 3 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 8 | 1 4 | oppradd | |- ( +g ` R ) = ( +g ` O ) |
| 9 | 1 5 | oppr0 | |- ( 0g ` R ) = ( 0g ` O ) |
| 10 | eqid | |- ( invg ` O ) = ( invg ` O ) |
|
| 11 | 7 8 9 10 | grpinvfval | |- ( invg ` O ) = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) ) |
| 12 | 6 11 | eqtr4i | |- N = ( invg ` O ) |