This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal of unitmulcl in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| unitmulcl.2 | |- .x. = ( .r ` R ) |
||
| unitmulclb.1 | |- B = ( Base ` R ) |
||
| Assertion | unitmulclb | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) e. U <-> ( X e. U /\ Y e. U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| 2 | unitmulcl.2 | |- .x. = ( .r ` R ) |
|
| 3 | unitmulclb.1 | |- B = ( Base ` R ) |
|
| 4 | simp1 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> R e. CRing ) |
|
| 5 | simp2 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 6 | simp3 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 7 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 8 | 3 7 2 | dvdsrmul | |- ( ( X e. B /\ Y e. B ) -> X ( ||r ` R ) ( Y .x. X ) ) |
| 9 | 5 6 8 | syl2anc | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> X ( ||r ` R ) ( Y .x. X ) ) |
| 10 | 3 2 | crngcom | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) ) |
| 11 | 9 10 | breqtrrd | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> X ( ||r ` R ) ( X .x. Y ) ) |
| 12 | 1 7 | dvdsunit | |- ( ( R e. CRing /\ X ( ||r ` R ) ( X .x. Y ) /\ ( X .x. Y ) e. U ) -> X e. U ) |
| 13 | 12 | 3expia | |- ( ( R e. CRing /\ X ( ||r ` R ) ( X .x. Y ) ) -> ( ( X .x. Y ) e. U -> X e. U ) ) |
| 14 | 4 11 13 | syl2anc | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) e. U -> X e. U ) ) |
| 15 | 3 7 2 | dvdsrmul | |- ( ( Y e. B /\ X e. B ) -> Y ( ||r ` R ) ( X .x. Y ) ) |
| 16 | 6 5 15 | syl2anc | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> Y ( ||r ` R ) ( X .x. Y ) ) |
| 17 | 1 7 | dvdsunit | |- ( ( R e. CRing /\ Y ( ||r ` R ) ( X .x. Y ) /\ ( X .x. Y ) e. U ) -> Y e. U ) |
| 18 | 17 | 3expia | |- ( ( R e. CRing /\ Y ( ||r ` R ) ( X .x. Y ) ) -> ( ( X .x. Y ) e. U -> Y e. U ) ) |
| 19 | 4 16 18 | syl2anc | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) e. U -> Y e. U ) ) |
| 20 | 14 19 | jcad | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) e. U -> ( X e. U /\ Y e. U ) ) ) |
| 21 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 22 | 21 | 3ad2ant1 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> R e. Ring ) |
| 23 | 1 2 | unitmulcl | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) e. U ) |
| 24 | 23 | 3expib | |- ( R e. Ring -> ( ( X e. U /\ Y e. U ) -> ( X .x. Y ) e. U ) ) |
| 25 | 22 24 | syl | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( ( X e. U /\ Y e. U ) -> ( X .x. Y ) e. U ) ) |
| 26 | 20 25 | impbid | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) e. U <-> ( X e. U /\ Y e. U ) ) ) |