This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| dvdsrmul1.3 | |- .x. = ( .r ` R ) |
||
| Assertion | dvdsrmul1 | |- ( ( R e. Ring /\ Z e. B /\ X .|| Y ) -> ( X .x. Z ) .|| ( Y .x. Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | dvdsrmul1.3 | |- .x. = ( .r ` R ) |
|
| 4 | 1 2 3 | dvdsr | |- ( X .|| Y <-> ( X e. B /\ E. x e. B ( x .x. X ) = Y ) ) |
| 5 | simplll | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> R e. Ring ) |
|
| 6 | simplr | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> X e. B ) |
|
| 7 | simpllr | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> Z e. B ) |
|
| 8 | 1 3 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
| 9 | 5 6 7 8 | syl3anc | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> ( X .x. Z ) e. B ) |
| 10 | 1 2 3 | dvdsrmul | |- ( ( ( X .x. Z ) e. B /\ x e. B ) -> ( X .x. Z ) .|| ( x .x. ( X .x. Z ) ) ) |
| 11 | 9 10 | sylancom | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> ( X .x. Z ) .|| ( x .x. ( X .x. Z ) ) ) |
| 12 | simpr | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> x e. B ) |
|
| 13 | 1 3 | ringass | |- ( ( R e. Ring /\ ( x e. B /\ X e. B /\ Z e. B ) ) -> ( ( x .x. X ) .x. Z ) = ( x .x. ( X .x. Z ) ) ) |
| 14 | 5 12 6 7 13 | syl13anc | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> ( ( x .x. X ) .x. Z ) = ( x .x. ( X .x. Z ) ) ) |
| 15 | 11 14 | breqtrrd | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> ( X .x. Z ) .|| ( ( x .x. X ) .x. Z ) ) |
| 16 | oveq1 | |- ( ( x .x. X ) = Y -> ( ( x .x. X ) .x. Z ) = ( Y .x. Z ) ) |
|
| 17 | 16 | breq2d | |- ( ( x .x. X ) = Y -> ( ( X .x. Z ) .|| ( ( x .x. X ) .x. Z ) <-> ( X .x. Z ) .|| ( Y .x. Z ) ) ) |
| 18 | 15 17 | syl5ibcom | |- ( ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) /\ x e. B ) -> ( ( x .x. X ) = Y -> ( X .x. Z ) .|| ( Y .x. Z ) ) ) |
| 19 | 18 | rexlimdva | |- ( ( ( R e. Ring /\ Z e. B ) /\ X e. B ) -> ( E. x e. B ( x .x. X ) = Y -> ( X .x. Z ) .|| ( Y .x. Z ) ) ) |
| 20 | 19 | expimpd | |- ( ( R e. Ring /\ Z e. B ) -> ( ( X e. B /\ E. x e. B ( x .x. X ) = Y ) -> ( X .x. Z ) .|| ( Y .x. Z ) ) ) |
| 21 | 4 20 | biimtrid | |- ( ( R e. Ring /\ Z e. B ) -> ( X .|| Y -> ( X .x. Z ) .|| ( Y .x. Z ) ) ) |
| 22 | 21 | 3impia | |- ( ( R e. Ring /\ Z e. B /\ X .|| Y ) -> ( X .x. Z ) .|| ( Y .x. Z ) ) |