This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmcl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmscl | |- ( F ( ~~>u ` S ) G -> S e. _V ) |
|
| 2 | ulmval | |- ( S e. _V -> ( F ( ~~>u ` S ) G <-> E. n e. ZZ ( F : ( ZZ>= ` n ) --> ( CC ^m S ) /\ G : S --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) ) |
|
| 3 | 1 2 | syl | |- ( F ( ~~>u ` S ) G -> ( F ( ~~>u ` S ) G <-> E. n e. ZZ ( F : ( ZZ>= ` n ) --> ( CC ^m S ) /\ G : S --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) ) |
| 4 | 3 | ibi | |- ( F ( ~~>u ` S ) G -> E. n e. ZZ ( F : ( ZZ>= ` n ) --> ( CC ^m S ) /\ G : S --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 5 | simp2 | |- ( ( F : ( ZZ>= ` n ) --> ( CC ^m S ) /\ G : S --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) -> G : S --> CC ) |
|
| 6 | 5 | rexlimivw | |- ( E. n e. ZZ ( F : ( ZZ>= ` n ) --> ( CC ^m S ) /\ G : S --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) -> G : S --> CC ) |
| 7 | 4 6 | syl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |